Experimental Investigation of Electrochemical Micromachaning Process Parameters on Pure-Titanium Using Taguchi-Grey Relational Analysis
Non-conventional machine are nowadays plays a vital role in manufacturing complex shaped products and to produce the product with high accuracy the electrochemical machining is widely used to machine complicated shapes for electrically conducting difficult-to-machine materials such as super alloys, Ti-alloys, alloy steel, tool steel, stainless steel, etc. such titanium-based alloys are in common use for aero engine components such as blades and blisks (blade integrated disks). Therefore, in this present work to investigate the influence of some predominant electrochemical process parameters such as applied voltage, electrolyte concentration, Micro-tool feed rate and duty cycle on the metal removal rate , overcut and surface roughness to fulfill the effective utilization of electrochemical machining of Pure-titanium. The purpose of this study is to investigate the influence of process parameters on machining characteristics and optimize the combination of those parameters using Taguchi-grey relational analysis. From this result, it is observed that process parameters have significant role in Electrochemical Micromachining process and the optimization values has been found using proposed multi-response methodology.