Static and Free Vibration Analysis of Structures Composed of Functionally Graded Material with Random Material Properties

2016 ◽  
Vol 857 ◽  
pp. 249-254
Author(s):  
Aswathy Komalan ◽  
Dhanya Krishnan

Functionally graded materials (FGMs) have mechanical properties that vary continuously from one phase to another within a confined volume. In general, these materials exhibit certain amount of scatter in their properties due to different factors. The dispersion in the response values of a structure is due to the scatter in the values of material properties and applied external load. For design purposes, it is essential to know the potential variations in the structural response due to the system material or external randomness. In the present work, free vibration and static analysis on FGM structures with material randomness are considered.

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Ning Zhang ◽  
Tahir Khan ◽  
Haomin Guo ◽  
Shaoshuai Shi ◽  
Wei Zhong ◽  
...  

Functionally graded materials (FGMs) are novel materials whose properties change gradually with respect to their dimensions. It is the advanced development of formerly used composite materials and consists of two or more materials in order to achieve the desired properties according to the application where an FGM is used. FGMs have obtained a great attention of researchers in the past decade due to their graded properties at every single point in various dimensions. The properties of an FGM are not identical to the materials that constitute it. This paper aims to present an overview of the existing literature on stability, buckling, and free vibration analysis of FGM carried out by numerous authors in the past decade. Moreover, the analyses of mathematical models adopted for the aforementioned analyses are not the core purpose of this paper. At the end, future work is also suggested in this review paper.


2017 ◽  
Vol 14 (02) ◽  
pp. 1750011 ◽  
Author(s):  
T. Nguyen-Thoi ◽  
T. Rabczuk ◽  
V. Ho-Huu ◽  
L. Le-Anh ◽  
H. Dang-Trung ◽  
...  

A cell-based smoothed three-node Mindlin plate element (CS-MIN3) was recently proposed and proven to be robust for static and free vibration analyses of Mindlin plates. The method improves significantly the accuracy of the solution due to softening effect of the cell-based strain smoothing technique. In addition, it is very flexible to apply for arbitrary complicated geometric domains due to using only three-node triangular elements which can be easily generated automatically. However so far, the CS-MIN3 has been only developed for isotropic material and for analyzing intact structures without possessing internal cracks. The paper hence tries to extend the CS-MIN3 by integrating itself with functionally graded material (FGM) and enriched functions of the extended finite element method (XFEM) to give a so-called extended cell-based smoothed three-node Mindlin plate (XCS-MIN3) for free vibration analysis of cracked FGM plates. Three numerical examples with different conditions are solved and compared with previous published results to illustrate the accuracy and reliability of the XCS-MIN3 for free vibration analysis of cracked FGM plates.


Sign in / Sign up

Export Citation Format

Share Document