3D Curve Generation Using Spherical Polar Piecewise Interpolation in CAD and CAM

2020 ◽  
Vol 896 ◽  
pp. 224-228
Author(s):  
Mihai Dupac

In this paper a newly 3D path planning approach and curve generation for design and manufacturing efficiency is considered. The 3D path is generated by a combination of piecewise interpolating curves - along a given number of via-points - created via a spherical coordinate system specified by the polar angles, radial distances and the associated azimuthal angles. Each piecewise interpolating curve is constructed using Hermite polar interpolation in the projective polar plane and the rotating azimuthal plane. To verify the proposed approach, numerical simulations for the generation of a helix design, a 4 and 6 leaf design and a trajectory planning of a picking robot arm are conducted.

Author(s):  
Jean-Yves Dieulot ◽  
Issam Thimoumi ◽  
Frédéric Colas ◽  
Richard Béarée

Adequate Path Planning design is an important stage for controlling flexible axes because it may allow to cancel vibrations induced by oscillating modes. Among bang-bang profiles which are linked to optimal control, jerk assignment (acceleration derivative) and input shapers have been investigated. Theoretical results show the performance and robustness with respect to natural frequency mismatch. Practical validations on a real robot arm show the relevance of the jerk algorithm which is more robust with the same productivity performances as input shaping techniques.


2020 ◽  
Vol 44 (4) ◽  
pp. 501-510
Author(s):  
Louis-Francis Y. Tremblay ◽  
Marc Arsenault ◽  
Meysar Zeinali

In this paper, a novel trajectory planning methodology is proposed for use within a semi-automated hydraulic rockbreaker system. The objective of the proposed method is to minimize the trajectory duration while hydraulic fluid flow rate limits are respected. Within the trajectory planning methodology, a point-to-point path planning approach based on the decoupling of the motion of the rockbreaker’s first joint is compared with an alternative approach based on Cartesian straight-line motion. Each of these path types is parameterized as a function of time based on an imposed trajectory profile that ensures smooth rockbreaker motions. A constrained nonlinear optimization problem is formulated and solved with the trajectory duration as the objective function while constraints are applied to ensure that flow rate limits through the rockbreaker’s proportional valves and hydraulic pump are not exceeded. The proposed methodology is successfully implemented to compute a set of representative trajectories, with the path planning approach based on the decoupling of the motion of the rockbreaker’s first joint consistently producing shorter trajectory durations.


2021 ◽  
Vol 13 (8) ◽  
pp. 1525
Author(s):  
Gang Tang ◽  
Congqiang Tang ◽  
Hao Zhou ◽  
Christophe Claramunt ◽  
Shaoyang Men

Most Coverage Path Planning (CPP) strategies based on the minimum width of a concave polygonal area are very likely to generate non-optimal paths with many turns. This paper introduces a CPP method based on a Region Optimal Decomposition (ROD) that overcomes this limitation when applied to the path planning of an Unmanned Aerial Vehicle (UAV) in a port environment. The principle of the approach is to first apply a ROD to a Google Earth image of a port and combining the resulting sub-regions by an improved Depth-First-Search (DFS) algorithm. Finally, a genetic algorithm determines the traversal order of all sub-regions. The simulation experiments show that the combination of ROD and improved DFS algorithm can reduce the number of turns by 4.34%, increase the coverage rate by more than 10%, and shorten the non-working distance by about 29.91%. Overall, the whole approach provides a sound solution for the CPP and operations of UAVs in port environments.


Author(s):  
Heather Johnston ◽  
Colleen Dewis ◽  
John Kozey

Objective The objectives were to compare cylindrical and spherical coordinate representations of the maximum reach envelope (MRE) and apply these to a comparison of age and load on the MRE. Background The MRE is a useful measurement in the design of workstations and quantifying functional capability of the upper body. As a dynamic measure, there are human factors that impact the size, shape, and boundaries of the MRE. Method Three-dimensional reach measures were recorded using a computerized potentiometric system for anthropometric measures (CPSAM) on two adult groups (aged 18–25 years and 35–70 years). Reach trials were performed holding .0, .5, and 1 kg. Results Three-dimensional Cartesian coordinates were transformed into cylindrical ( r, θ , Z) and spherical ( r, θ, ϕ) coordinates. Median reach distance vectors were calculated for 54 panels within the MRE as created by incremented banding of the respective coordinate systems. Reach distance and reach area were compared between the two groups and the loaded conditions using a spherical coordinate system. Both younger adults and unloaded condition produced greater reach distances and reach areas. Conclusions Where a cylindrical coordinate system may reflect absolute reference for design, a normalized spherical coordinate system may better reflect functional range of motion and better compare individual and group differences. Age and load are both factors that impact the MRE. Application These findings present measurement considerations for use in human reach investigation and design.


2014 ◽  
Vol 602-605 ◽  
pp. 1352-1357 ◽  
Author(s):  
Yong Ting Zhao ◽  
Bin Zheng ◽  
Hong Lin Ma

This paper proposes a new method of 6-DOF serial robot’s trajectory planning. Ensuring to satisfy the physical constraints of space conditions, the robot’s trajectory is interpolated in the Cartesian coordinate system, and using quaternion interpolation to solve the multiple solution problem in RPY interpolation. Meanwhile, the interpolated position information is transformed into the angular displacement information of the joint coordinate system, and the joint space trajectory planning is achieved using the genetic algorithms integrated velocity, acceleration, jerk and torque and other important kinematic and dynamic constraints. In robot safety and stability, the method is better than the general approach, and it has both the ideal trajectory parameters of the global search ability and performance planning.


Volume 2 ◽  
2004 ◽  
Author(s):  
Reza Ravani ◽  
Ali Meghdari

The aim of this paper is to demonstrate that the techniques of Computer Aided Geometric Design such as spatial rational curves and surfaces could be applied to Kinematics, Computer Animation and Robotics. For this purpose we represent a method which utilizes a special class of rational curves called Rational Frenet-Serret (RF) [8] curves for robot trajectory planning. RF curves distinguished by the property that the motion of their Frenet-Serret frame is rational. We describe an algorithm for interpolation of positions by a rational Frenet-Serret motion. Further more we provide an analysis on spatial frames (Frenet-Serret frame and Rotation Minimizing frame) for smooth robot arm motion and investigate their applications in sweep surface modeling.


2014 ◽  
Vol 705 ◽  
pp. 164-168
Author(s):  
Sang Wook Park ◽  
Hee Young Maeng ◽  
Ju Wook Park

Recently, automatic 3D scanning devices are commonly researched and developed for better productivity of the reverse engineering fields. In this paper, a 3D scanner utilizing a spherical coordinate system was designed and analyzed using FEM analysis. The system was designed for optimal performance, high precision, minimal deflection, and speed of data collection. FEM analysis allowed us to properly design the system to achieve these goals, with focus on the deflection of the cantilever arm. Results of the FEM analysis and figures showing the apparatus design are provided. Successive prototypes are shown to increase in overall performance and reliability through improved design and analysis.


Sign in / Sign up

Export Citation Format

Share Document