Research on Transonic Wind Tunnel Flutter Test for a Wing Model

2014 ◽  
Vol 1006-1007 ◽  
pp. 26-29
Author(s):  
Li Yu ◽  
Bin Bin Lv ◽  
Hong Tao Guo ◽  
Yu Yan ◽  
Xing Hua Yang ◽  
...  

This paper adopts self-designed wing model to conduct flutter test on subsonic and transonic, and obtains flutter characteristic of the model, and the test results are used for calibration and verification of flutter procedures. The sub-critical extrapolation is used to obtain the flutter sub-critical parameters and the direct observation method is used to obtain comparison of results. Error of results obtained by the two approaches does not exceed 5%, and validates reliability of the sub-critical prediction approach in continuous adjusted dynamic pressure flutter test.

2016 ◽  
Vol 66 (4) ◽  
pp. 34-39 ◽  
Author(s):  
Dijana Damljanovic ◽  
Djordje Vukovic ◽  
Aleksandar Vitic ◽  
Jovan Isakovic ◽  
Goran Ocokoljic

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2827
Author(s):  
Chien-Yuan Kuo ◽  
Rong-Jing Wang ◽  
Yi-Pin Lin ◽  
Chi-Ming Lai

We are investigating how to use urban design approaches to conduct the layout and basic design of newly-built high-rise buildings to reduce wind obstruction and create effective urban ventilation. Few studies have addressed this issue. This study analyzes the effects of high-rise building on pedestrian-level wind in downstream street canyons based on wind tunnel test results, and examines the suitability of an urban design specification. The height (H) of high-rise buildings and the airflow passage width (S) between adjacent high-rise buildings are key control factors for this issue; H/D = 3 and S/D = 1.125 are critical parameters and recommended values (D is the height of the downstream street blocks).


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yan Ouyang ◽  
Kaichun Zeng ◽  
Xiping Kou ◽  
Yingsong Gu ◽  
Zhichun Yang

The static aeroelastic behaviours of a flat-plate forward-swept wing model in the vicinity of static divergence are investigated by numerical simulations and wind tunnel tests. A medium fidelity model based on the vortex lattice method (VLM) and nonlinear structural analysis is proposed to calculate the displacements of the wing structure with large deformation. Follower forces effect and geometric nonlinearity are considered to calculate the deformation of the wing by finite element method (FEM). In the wind tunnel tests, the divergence dynamic pressure is predicted by the Southwell method, and the static aeroelastic displacement is measured by a photogrammetric method. The results obtained by the medium fidelity model calculations show reasonable agreement with wind tunnel test results. A high fidelity model based on coupled computational fluid dynamics (CFD) and computational structural dynamics (CSD) predicts better results of the wing tip displacement when the freestream dynamic pressure is approaching the divergence dynamic pressure.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 200
Author(s):  
Natsuki Tsushima ◽  
Kenichi Saitoh ◽  
Hitoshi Arizono ◽  
Kazuyuki Nakakita

Additive manufacturing (AM) technology has a potential to improve manufacturing costs and may help to achieve high-performance aerospace structures. One of the application candidates would be a wind tunnel wing model. A wing tunnel model requires sophisticated designs and precise fabrications for accurate experiments, which frequently increase manufacturing costs. A flutter wind tunnel testing, especially, requires a significant cost due to strict requirements in terms of structural and aeroelastic characteristics avoiding structural failures and producing a flutter within the wind tunnel test environment. The additive manufacturing technique may help to reduce the expensive testing cost and allows investigation of aeroelastic characteristics of new designs in aerospace structures as needed. In this paper, a metal wing model made with the additive manufacturing technique for a transonic flutter test is studied. Structural/aeroelastic characteristics of an additively manufactured wing model are evaluated numerically and experimentally. The transonic wind tunnel experiment demonstrated the feasibility of the metal AM-based wings in a transonic flutter wind tunnel testing showing the capability to provide reliable experimental data, which was consistent with numerical solutions.


Author(s):  
sergio oliveira ◽  
Ana Cristina Avelar ◽  
Henrique Leite ◽  
João Batista Pessoa Falcão Filho

Sign in / Sign up

Export Citation Format

Share Document