Study on Acoustic Model of Transformer

2014 ◽  
Vol 1008-1009 ◽  
pp. 571-575
Author(s):  
Jing Zhu Hu ◽  
Di Chen Liu ◽  
Qing Fen Liao ◽  
Su Wei ◽  
Lei Yu

The model of transformer as a noise source is very critical for substation noise prediction. The transformer is equivalent to several point sources on the basis of regarding the transformer as a combination of several planar sources. This equivalent model is based on equivalent source method and it is convenient and easy. The model of 9 equivalent point sources is simulated to verify that the rebuilt sound field is roughly the same as the actual sound field generated by the plane source. Moreover, the accuracy of the model with different settings was discussed. The acoustic model is accurate and feasible to calculate the noise level radiated by transformer and it is meaningful for substation noise control.

2016 ◽  
Vol 41 (2) ◽  
pp. 309-314
Author(s):  
Diana Ioana Popescu ◽  
Ioan Cosma

Abstract The paper presents two theoretical models for traffic noise level distribution on curved horizontal roads. In the case of vehicles moving on a given route, one can consider, in terms of sound field, that the granular traffic is equivalent for short periods with a quasi-continuous noise flow. When computing and modelling the noise level generated by traffic on roads with complex trajectory, it is common to treat the route as a sum of small length road segments, each being assimilated with a linear noise source. This paper started from the assumption that the route can be decomposed into a sequence of linear and arc-shaped road segments, each of which is treated as a linear respectively curved noise source. An arc-shaped road segment is modelled by a tubular vibrating surface, of circular or rectangular section. In the case of rectangular section, the vibrating blade emits complex sounds on its both vertical sides and the generated sound field can be described more clearly, qualitatively and quantitatively, through intensity distribution. The theoretical models presented in the paper have direct application to the traffic noise prediction and noise maps drawing


Author(s):  
M-C Chiu

Noise control is important and essential in an enclosed machine room where the noise level is restricted by the occupational safety and health act. Before the appropriate noise abatement is performed, the identification work of location and free-field sound energy of equipment inside the reverberant sound field become crucial and an absolute prerequisite. Research on new techniques of single noise control and sound absorption system has been well addressed and developed; however, the research work on sound identification for an existing multi-noise enclosed room is rare and observably insufficient. Without the actual location and pure free-field noise level, noise control work will be improper and wasted; therefore, the numerical approach of noise recognition from the reverberant sound field becomes necessary and obligatory. In this paper, the novel technique of simulated annealing (SA) in conjunction with the method of minimized variation square is applied in the following numerical optimization. In addition, various sound monitoring systems in detecting the noise condition within the echo area is also introduced. Before noise identification can be carried out, the accuracy of the mathematical model in a single-noise enclosed system has to be checked by SoundPlan (a professional simulation package in sound field). Thereafter, the SA recognition of three kinds of multi-noise systems has to be exemplified and fully explored. The results reveal that either the locations or sound power levels (SWLs) of noises can be precisely distinguished. Consequently, this paper may provide an efficient and rapid way in distinguishing the location and free-field noise level of equipment in a complicated sound field.


Author(s):  
A.D Rawlins

In the following work, we solve the problem of the best orientation of a rigid noise barrier, which has one face lined with absorbent material, between a noise source and a receiver point in the shadow region of the barrier. By the ‘best orientation’, we mean that positioning of the barrier which yields the least noise level at the receiving point for a given barrier and source position.


2001 ◽  
Vol 124 (1) ◽  
pp. 100-104 ◽  
Author(s):  
Zhang Qizhi ◽  
Jia Yongle

The nonlinear active noise control (ANC) is studied. The nonlinear ANC system is approximated by an equivalent model composed of a simple linear sub-model plus a nonlinear sub-model. Feedforward neural networks are selected to approximate the nonlinear sub-model. An adaptive active nonlinear noise control approach using a neural network enhancement is derived, and a simplified neural network control approach is proposed. The feedforward compensation and output error feedback technology are utilized in the controller designing. The on-line learning algorithm based on the error gradient descent method is proposed, and local stability of closed loop system is proved based on the discrete Lyapunov function. A nonlinear simulation example shows that the adaptive active noise control method based on neural network compensation is very effective to the nonlinear noise control, and the convergence of the NNEH control is superior to that of the NN control.


1999 ◽  
Vol 5 (2) ◽  
pp. 135-140
Author(s):  
Vytautas Stauskis

The paper deals with the differences between the energy created by four different pulsed sound sources, ie a sound gun, a start gun, a toy gun, and a hunting gun. A knowledge of the differences between the maximum energy and the minimum energy, or the signal-noise ratio, is necessary to correctly calculate the frequency dependence of reverberation time. It has been established by investigations that the maximum energy excited by the sound gun is within the frequency range of 250 to 2000 Hz. It decreases by about 28 dB at the low frequencies. The character of change in the energy created by the hunting gun differs from that of the sound gun. There is no change in the maximum energy within the frequency range of 63–100 Hz, whereas afterwards it increases with the increase in frequency but only to the limit of 2000 Hz. In the frequency range of 63–500 Hz, the energy excited by the hunting gun is lower by 15–30 dB than that of the sound gun. As frequency increases the difference is reduced and amounts to 5–10 dB. The maximum energy of the start gun is lower by 4–5 dB than that of the hunting gun in the frequency range of up to 1000 Hz, while afterwards the difference is insignificant. In the frequency range of 125–250 Hz, the maximum energy generated by the sound gun exceeds that generated by the hunting gun by 20 dB, that by the start gun by 25 dB, and that by the toy gun—by as much as 35 dB. The maximum energy emitted by it occupies a wide frequency range of 250 to 2000 Hz. Thus, the sound gun has an advantage over the other three sound sources from the point of view of maximum energy. Up until 500 Hz the character of change in the direct sound energy is similar for all types of sources. The maximum energy of direct sound is also created by the sound gun and it increases along with frequency, the maximum values being reached at 500 Hz and 1000 Hz. The maximum energy of the hunting gun in the frequency range of 125—500 Hz is lower by about 20 dB than that of the sound gun, while the maximum energy of the toy gun is lower by about 25 dB. The maximum of the direct sound energy generated by the hunting gun, the start gun and the toy gun is found at high frequencies, ie at 1000 Hz and 2000 Hz, while the sound gun generates the maximum energy at 500 Hz and 1000 Hz. Thus, the best results are obtained when the energy is emitted by the sound gun. When the sound field is generated by the sound gun, the difference between the maximum energy and the noise level is about 35 dB at 63 Hz, while the use of the hunting gun reduces the difference to about 20–22 dB. The start gun emits only small quantities of low frequencies and is not suitable for room's acoustical analysis at 63 Hz. At the frequency of 80 Hz, the difference between the maximum energy and the noise level makes up about 50 dB, when the sound field is generated by the sound gun, and about 27 dB, when it is generated by the hunting gun. When the start gun is used, the difference between the maximum signal and the noise level is as small as 20 dB, which is not sufficient to make a reverberation time analysis correctly. At the frequency of 100 Hz, the difference of about 55 dB between the maximum energy and the noise level is only achieved by the sound gun. The hunting gun, the start gun and the toy gun create the decrease of about 25 dB, which is not sufficient for the calculation of the reverberation time. At the frequency of 125 Hz, a sufficiently large difference in the sound field decay amounting to about 40 dB is created by the sound gun, the hunting gun and the start gun, though the character of the sound field curve decay of the latter is different from the former two. At 250 Hz, the sound gun produces a field decay difference of almost 60 dB, the hunting gun almost 50 dB, the start gun almost 40 dB, and the toy gun about 45 dB. At 500 Hz, the sound field decay is sufficient when any of the four sound sources is used. The energy difference created by the sound gun is as large as 70 dB, by the hunting gun 50 dB, by the start gun 52 dB, and by the toy gun 48 dB. Such energy differences are sufficient for the analysis of acoustic indicators. At the high frequencies of 1000 to 4000 Hz, all the four sound sources used, even the toy gun, produce a good difference of the sound field decay and in all cases it is possible to analyse the reverberation process at varied intervals of the sound level decay.


Author(s):  
Quanrui Hao ◽  
Zheng Xu

For high-frequency (HF) interference in an HVDC converter station, the modeling of the noise source which causes interference with the power line carrier (PLC) remains a problem. Based on the profound analysis of the basic principles on which HF noise in PLC band is produced during the commutation process, the equivalent model of the HVDC valve with a snubber circuit is applied to the simulation of the GUI-GUANG HVDC project in PSCAD/EMTDC. Then spectrum plots of the noise source in the frequency domain are obtained by FFT analysis of the voltage waveforms gained from the simulation. Through analyzing the spectrum characteristics of the noise source in various operating modes, the main factors influencing the level of HF noise are found. Furthermore, a modified empirical model used to calculate the level of the noise source is introduced, with particular explanation of the physical quantities used in the model. The spectra of the noise source gained from the modified empirical model and from the simulation are compared with an actual spectrum based on the GUI-GUANG HVDC project. The results show that the modified empirical model can meet the requirement of HF interference calculation.


2018 ◽  
Vol 860 ◽  
pp. 1-4 ◽  
Author(s):  
Jonathan B. Freund

Jet noise prediction is notoriously challenging because only subtle features of the flow turbulence radiate sound. The article by Brès et al. (J. Fluid Mech., vol. 851, 2018, pp. 83–124) shows that a well-constructed modelling procedure for the nozzle turbulence can provide unprecedented sub-dB prediction accuracy with modest-scale large-eddy simulations, as confirmed by detailed comparison with turbulence and sound-field measurements. This both illuminates the essential mechanisms of the flow and facilitates prediction for engineering design.


2016 ◽  
Vol 52 (17) ◽  
pp. 1501-1503
Author(s):  
Shu Li ◽  
Zhongming Xu ◽  
Yansong He ◽  
Zhifei Zhang ◽  
Qinghua Wang

2009 ◽  
Vol 125 (6) ◽  
pp. 3742-3755 ◽  
Author(s):  
D. J. Moreau ◽  
J. Ghan ◽  
B. S. Cazzolato ◽  
A. C. Zander

Sign in / Sign up

Export Citation Format

Share Document