Study on Dissolution Different of Metal Palladium Powder and Place

2014 ◽  
Vol 1033-1034 ◽  
pp. 1283-1287
Author(s):  
Ji Shou Zhao ◽  
X.M. Zhang ◽  
J.H. Dai

The chemistry of the dissolution of Palladium in pressure-cyanide has not received considerable attention. At room temperature and pressures, the reaction between sodium cyanide and Palladium does not occur because of poor kinetics. However, at elevated temperatures between 100-160 °C, Palladium can be leached by sodium cyanide like the reaction of gold. A research study has been undertaken to develop the fundamentals of a method for the direct dissolution of Palladium In this work, the dissolution of Palladium powder and place were measured in pressure clear cyanide solution. The cyanide leaching reaction mechanism is also discussed. The data of Palladium powder and place at different cyanide concentrations, different temperature and different oxygen pressure are obtained. The dissolution rate of metal Palladium powder and place were found to be relate to the cyanide and oxygen level.

2013 ◽  
Vol 734-737 ◽  
pp. 2514-2518
Author(s):  
Li Yan ◽  
Ji Shou Zhao

s: A research study has been undertaken to develop the fundamentals of a method for the direct dissolution of platinum group metals (PGMs). At room temperature and pressures, the reaction between sodium cyanide and platinum group metals (PGMs) does not occur because of poor kinetics. However, at elevated temperatures between 120-180 °C, PGMs can be leached by sodium cyanide like the reaction of gold. In this work, the dissolution of Palladium and Platinum powder were measured in pressure clear cyanide solution. The cyanide leaching reaction mechanism is also discussed.The data at different cyanide concentrations, different temperature and different oxygen pressure are obtained. The dissolution rate off metal Palladium and Platinum powder were found to be a function of the cyanide and oxygen level.


2014 ◽  
Vol 522-524 ◽  
pp. 424-428
Author(s):  
J.S. Zhao ◽  
J.H. Dai

A research study has been undertaken to develop the fundamentals of a method for the direct dissolution of metal platinum. At room temperature and pressures, the reaction between sodium cyanide and platinum group metals (PGMs) does not occur because of poor kinetics. However, at elevated temperatures, PGMs can be dissolved by sodium cyanide like the reaction of gold. In this work, the dissolution of Platinum was measured in pressure clear cyanide solution. The data at different cyanide concentrations, temperature and oxygen pressure are obtained. With increasing cyanide concentration and oxygen pressure, the dissolution first increased to a maximum value and then decreased. With increasing temperature the dissolution is increased.


2012 ◽  
Vol 554-556 ◽  
pp. 541-545
Author(s):  
L. Yan ◽  
J.S. Zhao

A research study has been undertaken to develop the fundamentals of a method for the direct dissolution of Metal Platinum. At room temperature and pressures, the reaction between sodium cyanide and platinum group metals (PGMs) does not occur because of poor kinetics. However, at elevated temperatures between 20°C and 180°C, PGMs can be dissolved by sodium cyanide like the reaction of gold. In this work, the dissolution of Platinum was measured in pressure clear cyanide solution. The data at different cyanide concentrations, different temperature and different oxygen pressure are obtained. With increasing cyanide concentration and oxygen pressure, the dissolution first increased to a maximum value and then decreased. With increasing temperature the dissolution is increased. The dissolution was found to have a relation of the cyanide and oxygen level. The dissolution was independent of rotation speed for oxygen-saturated solutions and cyanide concentrations above 5 mol.m-3 and was well below chemical reaction-limited for cyanide and oxygen.


2012 ◽  
Vol 554-556 ◽  
pp. 695-699
Author(s):  
L. Yan ◽  
J.S. Zhao

A research study has been undertaken to develop the fundamentals of a method for the direct dissolution of Metal Palladium. At room temperature and pressures, the reaction between sodium cyanide and platinum group metals (PGMs) does not occur because of poor kinetics. However, at elevated temperatures between 100°C and 180°C, PGMs can be dissolved by sodium cyanide like the reaction of gold. In this work, the dissolution of Palladium was measured in pressure clear cyanide solution. The data at different cyanide concentrations, different temperature and different oxygen pressure are obtained. With increasing cyanide concentration and oxygen pressure, the dissolution first increased to a maximum value and then decreased. With increasing temperature the dissolution is increased. The dissolution was found to have a relation of the cyanide and oxygen level. The dissolution were independent of rotation speed for oxygen-saturated solutions and cyanide concentrations above 5 mol.m-3 and were well below chemical reaction-limited for cyanide and oxygen.


2011 ◽  
Vol 347-353 ◽  
pp. 1744-1748
Author(s):  
Ji Shou Zhao ◽  
Li Yan ◽  
Kun Huang ◽  
Jing Chen

At room temperature and pressures, the reaction between sodium cyanide and platinum group metals (PGMs) does not occur because of poor kinetics. However, at elevated temperatures between 100°C and 180°C, PGMs can be dissolved by sodium cyanide like the reaction of gold. In this work, the dissolution of Palladium was measured in pressure clear cyanide solution using a Palladium rotating disk. The data at different rotation speed, different cyanide concentrations, different temperature and different oxygen pressure are obtained. With increasing cyanide concentration and oxygen pressuer, the dissolution first increased to a maximum value and then decreased. With increasing temperature the dissolution is increased.The dissolution was found to have a relation of the cyanide and oxygen level. The dissolution were independent of rotation speed for oxygen-saturated solutions and cyanide concentrations above 5 mol.m-3 and were well below chemical reaction-limited for cyanide and oxygen.


2013 ◽  
Vol 446-447 ◽  
pp. 164-167
Author(s):  
J.S. Zhao ◽  
L. Yan

At room temperature and pressures, the reaction between sodium cyanide and platinum group metals (PGMs) does not occur because of poor kinetics. However, at elevated temperatures, PGMs can be leached by sodium cyanide like the reaction of gold. However, few rate expression which describe the leaching of Palladium in cyanide solution has been developed. In this paper, the rate of Palladium dissolution was measured in pressure clear cyanide solution using a Palladium rotating disk. The data at different rotation speed, cyanide concentrations, temperature and oxygen pressure are obtained. The dissolution rates were independent of rotation speed for oxygen-saturated solutions between 100-400rpm. With increasing temperature the dissolution rate is increased. With increasing cyanide concentration and oxygen pressure, the dissolution rate first increased to a maximum value and then decreased.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Author(s):  
G. M. Michal ◽  
T. K. Glasgow ◽  
T. J. Moore

Large additions of B to Fe-Ni alloys can lead to the formation of an amorphous structure, if the alloy is rapidly cooled from the liquid state to room temperature. Isothermal aging of such structures at elevated temperatures causes crystallization to occur. Commonly such crystallization pro ceeds by the nucleation and growth of spherulites which are spherical crystalline bodies of radiating crystal fibers. Spherulite features were found in the present study in a rapidly solidified alloy that was fully crysstalline as-cast. This alloy was part of a program to develop an austenitic steel for elevated temperature applications by strengthening it with TiB2. The alloy contained a relatively large percentage of B, not to induce an amorphous structure, but only as a consequence of trying to obtain a large volume fracture of TiB2 in the completely processed alloy. The observation of spherulitic features in this alloy is described herein. Utilization of the large range of useful magnifications obtainable in a modern TEM, when a suitably thinned foil is available, was a key element in this analysis.


Alloy Digest ◽  
1981 ◽  
Vol 30 (6) ◽  

Abstract FANSTEEL 85 METAL is a columbium-base alloy characterized by good fabricability at room temperature, good weldability and a good combination of creep strength and oxidation resistance at elevated temperatures. Its applications include missile and rocket components and many other high-temperature parts. This datasheet provides information on composition, physical properties, microstructure, hardness, elasticity, tensile properties, and bend strength as well as creep. It also includes information on low and high temperature performance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Cb-7. Producer or source: Fansteel Metallurgical Corporation. Originally published December 1963, revised June 1981.


Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

In this Chapter we address the physics of Bose-Einstein condensation and its implications to a driven-dissipative system such as the polariton laser. We discuss the dynamics of exciton-polaritons non-resonantly pumped within a microcavity in the strong coupling regime. It is shown how the stimulated scattering of exciton-polaritons leads to formation of bosonic condensates that may be stable at elevated temperatures, including room temperature.


Sign in / Sign up

Export Citation Format

Share Document