The Polarization of Silver Azide in Electric Field

2014 ◽  
Vol 1040 ◽  
pp. 744-747 ◽  
Author(s):  
A.P. Rodzevich ◽  
E.G. Gazenaur ◽  
L.V. Kuzmina ◽  
V.I. Krasheninin

The experimental results show that the relative permittivity in the threadlike silver azide crystals changes under the influence of the polarization field (10-3 ÷ 103 V/m). An amount of the formed intermediate product at a weak noncontact electric field decreases significantly that allows assuming that polarization influences primarily, at the stage of formation of the silver azide decomposition intermediate. The polarization in a constant noncontact electric field may be regarded as a control method of explosive sensitivity.

2017 ◽  
Vol 830 ◽  
pp. 012131 ◽  
Author(s):  
A P Rodzevich ◽  
E G Gazenaur ◽  
L V Kuzmina ◽  
V I Krasheninin ◽  
N V Gazenaur

2021 ◽  
Author(s):  
Ali Durdu ◽  
Yılmaz Uyaroğlu

Abstract Many studies have been introduced in the literature showing that two identical chaotic systems can be synchronized with different initial conditions. Secure data communication applications have also been made using synchronization methods. In the study, synchronization times of two popular synchronization methods are compared, which is an important issue for communication. Among the synchronization methods, active control, integer, and fractional-order Pecaro Carroll (P-C) method was used to synchronize the Burke-Shaw chaotic attractor. The experimental results showed that the P-C method with optimum fractional-order is synchronized in 2.35 times shorter time than the active control method. This shows that the P-C method using fractional-order creates less delay in synchronization and is more convenient to use in secure communication applications.


2019 ◽  
Vol 04 (01) ◽  
pp. 1842005
Author(s):  
Ryosuke Tsumura ◽  
Yusuke Takishita ◽  
Hiroyasu Iwata

Because fine needles can easily be deflected, accurate needle insertion is often difficult. Lower abdominal insertion is particularly difficult because of less imaging feedback; thus, an approach for allowing a straight insertion path by minimizing deflection is beneficial in cases of lower abdominal insertion. Although insertion with axial rotation can minimize deflection, the rotational insertion may cause tissue damage. Therefore, we established a novel insertion method for minimizing both deflection and tissue damage by combining rotation and vibration. Using layered tissues, we evaluated the effect of a combination of rotation and vibration in terms of deflection and tissue damage, which were measured by the insertion force and torque, and the area of the hole created by the needle using histological tissue sections to measure tissue damage. The experimental results demonstrated that insertion with unidirectional rotation is risky in terms of tissue wind-up, while insertion with bidirectional rotation can decrease deflection and avoid wind-up. We also found that insertion with vibration can decrease the insertion force and torque. Therefore, insertion with a combination of bidirectional rotation and vibration can minimize needle deflection and tissue damage, including the insertion force and torque and the hole area.


1994 ◽  
Vol 04 (06) ◽  
pp. 1703-1706 ◽  
Author(s):  
P. CELKA

We have built an experimental setup to apply Pyragas’s [1992, 1993] control method in order to stabilize unstable periodic orbits (UPO) in Chua’s circuit. We have been able to control low period UPO embedded in the double scroll attractor. However, experimental results show that the control method is useful under some restrictions we will discuss.


2012 ◽  
Vol 182-183 ◽  
pp. 427-430
Author(s):  
Li Feng Wei ◽  
Liang Cheng ◽  
Xing Man Yang

A adaptive control method of the pulse demagnetizer was presented, Can adjust the strength of the charge current automatically according to the changes of the magnetic content to ensure the constant of the magnetic field.The experimental results have shown that it has the advantages of low power consumption, strong anti-interference capability, stable and reliable operation, long life and good demagnetizing effect, when compared to the conventional demagnetizers.


Author(s):  
Hao Xu ◽  
Long Chen ◽  
Xiaodong Sun

Permanent magnet synchronous hub motors (PMSHMs) have been gradually introduced into the applications of electric vehicles. In order to output more torque, many researchers turned their research direction to six-phase motors. Because it is composed of two sets of three-phase windings, there will be interference between the windings, affecting the performance of the motor. In order to improve the steady and dynamic-state performance of permanent magnet six phase synchronous motor, a predictive torque control method based on multi vector model is proposed in this paper. Finally, experimental results show the effectiveness of this method.


Sign in / Sign up

Export Citation Format

Share Document