Studies on Tensile and Shear Properties of 3D Six-Directional SiO2f/SiO2 Composites

2014 ◽  
Vol 1048 ◽  
pp. 436-439
Author(s):  
Yun Jiang ◽  
Zhen Kai Wan

SiO2f/SiO2 composites reinforced with 3D six-directional preform were fabricated by silicasol-infiltration-sintering method. To characterize the mechanical properties of the composites, mechanical testing was carried out under various loading conditions, including tensile and shear loading. All of the testing curves exhibited highly nonlinear behavior. The results indicated that the 3D six-directional braided SiO2f/SiO2 composites exhibited superior tensile properties and good shear resistant. Therefore, the 3D six-directional braided composites developed can well meet the demands of the thermal structure component.

2012 ◽  
Vol 19 (2) ◽  
pp. 113-117 ◽  
Author(s):  
Yong Liu ◽  
Zhaofeng Chen ◽  
Jianxun Zhu ◽  
Yun Jiang ◽  
Binbin Li

Abstract(SiO2)f/SiO2 composites reinforced with three-dimensional (3D) six-directional preform were fabricated by the silicasol-infiltration-sintering method. The nominal fiber volume fraction was 47%. To characterize the mechanical properties of the composites, mechanical testing was carried out under various loading conditions, including tensile, flexural, and shear loading. The composite exhibited highly nonlinear stress-strain behavior under all the three types of loading. The results indicated that the 3D six-directional braided (SiO2)f/SiO2 composites exhibited superior flexural properties and good shear resistant as compared with other types of preform (2.5D and 3D four-directional)-reinforced (SiO2)f/SiO2 composites. 3D six-directional braided (SiO2)f/SiO2 composite exhibited graceful failure behavior under loading. The addition of 5th and 6th yarns resulted in controlled fracture and hence these 3D six-directional braided composites could possibly be suitable for thermal structure components.


2020 ◽  
Vol 897 ◽  
pp. 117-123
Author(s):  
Ho Ky Thanh ◽  
Nguyen Van Toan ◽  
Tran Van Dung

Present research work reports a study on new mechanical phenomenon of the porous Ti-3.5Nb-3.5Zr materials that address for implant materials in dental. The mechanical testing samples were prepared by two-step sintering method with dimension of 10 mm and height of 10mm. The compressive tests were carried on MTS instrument to determine the strain-stress curves. Then mechanical behavior of the materials was analyzed from those curves. For samples after sintering without space holder and binder addition, there were three deformation regions on the curves that were linear elasticity, plateau and densification. The mechanical behavior of materials was modeled, and the main parameters in the model were identified from the strain - stress curve. For sample after sintering with space holder and binder, materials were brittle. The mechanical properties of those samples were also determined. Microstructures of materials before mechanical testing were observed by SEM, and the surface was also analyzed by XRD.


1993 ◽  
Vol 265 (2) ◽  
pp. H469-H475 ◽  
Author(s):  
R. K. Strumpf ◽  
J. D. Humphrey ◽  
F. C. Yin

The architecture, vascular supply, and ease of tetanization make the diaphragm an ideal structure in which to assess multidimensional mechanical properties of active and passive striated muscle. We developed an isolated, perfused canine diaphragm preparation suitable for the assessment of biaxial stress-strain relations in both the resting state and during tetanization. Each of 33 specimens had a wide, flat region (approximately 3 x 3 cm) wherein there was a single predominant fiber direction. Simultaneous, equal stretchings were imposed in the fiber and perpendicular cross-fiber directions over the same strain ranges in both the passive state and during tetanic contraction. Highly nonlinear behavior was seen in the passive state with a limit of extensibility in both directions. The specimens were also markedly anisotropic, with the cross-fiber direction being stiffer than the fiber direction (slopes of the regression line for the stresses in each direction averaged 3.97). Moreover, 31 of the 33 specimens were stiffer in the cross-fiber direction, one was isotropic, and one was stiffer in the fiber direction. During tetanization, the extent and distribution of anisotropy were significantly altered (regression slope averaged 1.08, and 18 specimens were now either isotropic or stiffer in the fiber direction). Disrupting the membranes covering each surface increased extensibility and decreased the anisotropy, thereby suggesting that these membranes bear most of the passive load and contribute greatly to the cross-fiber stiffness and anisotropy of the intact diaphragm. Both before and after disruption of the surface membranes, there was still a consistent increase in cross-fiber stress during tetanization, implying active force generation perpendicular to the fiber direction.(ABSTRACT TRUNCATED AT 250 WORDS)


Alloy Digest ◽  
1995 ◽  
Vol 44 (5) ◽  

Abstract The Microcast-X process produces a substantially finer grain size that improves mechanical properties in MAR-M-247 with modest negative impact on rupture properties above 1600 F (871 C). This datasheet provides information on composition, microstructureand tensile properties as well as creep and fatigue. It also includes information on casting. Filing Code: Ni-481. Producer or source: Howmet Corporation.


Alloy Digest ◽  
1953 ◽  
Vol 2 (10) ◽  

Abstract CONDULOY is a low beryllium-copper alloy containing about 1.5% nickel. It responds to age-hardening heat treatment for improved mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Cu-11. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1972 ◽  
Vol 21 (11) ◽  

Abstract PD-135 is an oxygen-free, age-hardenable copper containing chromium and cadmium. It has excellent mechanical properties and high electrical and thermal conductivities. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-261. Producer or source: Phelps Dodge Copper Products Company.


Alloy Digest ◽  
1971 ◽  
Vol 20 (11) ◽  

Abstract COPPER ALLOY No. 675 is a copper-zinc alloy having excellent mechanical properties and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-244. Producer or source: Brass mills.


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract ALUMINUM 319.0 is a general-purpose foundry alloy that is moderately responsive to heat treatment. It has excellent casting characteristics and good mechanical properties. Among its many uses are crankcases, housings, engine parts, typewriter frames and rear-axle housings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as creep and fatigue. It also includes information on low and high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Al-256. Producer or source: Various aluminum companies.


Sign in / Sign up

Export Citation Format

Share Document