Preparation and Characterization of Anti-Oxidation Coatings for Sliding Plates

2010 ◽  
Vol 105-106 ◽  
pp. 432-434
Author(s):  
Li Na Wang ◽  
Bing Bing Fan ◽  
Rui Zhang ◽  
Hai Long Wang ◽  
De Liang Chen

High-temperature anti-oxidation coating was prepared by a milling process, which mainly composed of flake graphite and hexagonal BN (hBN). The coating was brushed on the sliding plate surface and dried in air for 24 h, The surface of the sliding plate painted was smooth and without peeling, suggesting a strong bonding strength. The samples were heated at 1200 °C for 20 min to evaluate the mass-loss rate. The mass-loss rate of the slide gate painted is 3.7%, less than the un-painted 5.1%. XRD and SEM techniques were used to characterize the as-heated samples. The results showed that the surface of the slide plate painted was skin rolling. And the graphite reacted with oxygen at an elevated temperature to reduce oxygen concentration. In addition, hBN also reacted with oxygen to form B2O3, which also has an oxygen-resistant role in the sliding plates. These coatings exhibited unique oxidation-resistant properties, and the service life of the coated sliding plates was obviously improved.

2013 ◽  
Vol 768 (1) ◽  
pp. 47 ◽  
Author(s):  
E. O. Ofek ◽  
L. Lin ◽  
C. Kouveliotou ◽  
G. Younes ◽  
E. Göğüş ◽  
...  
Keyword(s):  

2014 ◽  
Vol 664 ◽  
pp. 199-203 ◽  
Author(s):  
Wei Guang An ◽  
Lin Jiang ◽  
Jin Hua Sun ◽  
K.M. Liew

An experimental study on downward flame spread over extruded polystyrene (XPS) foam at a high elevation is presented. The flame shape, flame height, mass loss rate and flame spread rate were measured. The influences of width and high altitude were investigated. The flame fronts are approximately horizontal. Both the intensity of flame pulsation and the average flame height increase with the rise of sample width. The flame spread rate first drops and then rises with an increase in width. The average flame height, mass loss rate and flame spread rate at the higher elevation is smaller than that at a low elevation, which demonstrates that the XPS fire risk at the higher elevation area is lower. The experimental results agree well with the theoretical analysis. This work is vital to the fire safety design of building energy conservation system.


1998 ◽  
Vol 11 (1) ◽  
pp. 367-367
Author(s):  
S.D. Van Dyk ◽  
M.J. Montes ◽  
K.W. Weiler ◽  
R.A. Sramek ◽  
N. Panagia

The radio emission from supernovae provides a direct probe of a supernova’s circumstellar environment, which presumably was established by mass-loss episodes in the late stages of the progenitor’s presupernova evolution. The observed synchrotron emission is generated by the SN shock interacting with the relatively high-density circumstellar medium which has been fully ionized and heated by the initial UV/X-ray flash. The study of radio supernovae therefore provides many clues to and constraints on stellar evolution. We will present the recent results on several cases, including SN 1980K, whose recent abrupt decline provides us with a stringent constraint on the progenitor’s initial mass; SN 1993J, for which the profile of the wind matter supports the picture of the progenitor’s evolution in an interacting binary system; and SN 1979C, where a clear change in presupernova mass-loss rate occurred about 104 years before explosion. Other examples, such as SNe 19941 and 1996cb, will also be discussed.


2018 ◽  
Vol 136 ◽  
pp. 18-26 ◽  
Author(s):  
Gianluca Greco ◽  
María Videgain ◽  
Christian Di Stasi ◽  
Belén González ◽  
Joan J. Manyà

1996 ◽  
Vol 174 ◽  
pp. 357-358
Author(s):  
I. Saviane ◽  
G. Piotto ◽  
M. Capaccioli ◽  
F. Fagotto

The bimodal nature of the horizontal branch (HB) of NGC 1851 is known since Stetson (1981). In order to better understand the properties of its HB, we collected a set of data at the ESO-NTT telescope, which provides a full coverage of the cluster area. Additional archive images from the HST-WFPC camera have been used in order to study the central region. The resulting c-m diagram (CMD) for 20500 stars is presented in Fig. 1 (left). Despite its metallicity ([Fe/H]=−1.3), NGC 1851 presents a well defined blue HB tail, besides the expected red clump. The observed CMD has been compared with the synthetic ones. The bimodal HB can be reproduced assuming that there are two stellar populations in the cluster, with an age difference of ∼ 4 Gyr, hypothesis not supported by other properties of the CMD. On the other side, if we assume that the stars in NGC 1851 are 15 Gyr old (as suggested by the difference between the HB and the TO luminosities), only a bimodal mass loss can reproduce the HB morphology: only stars with higher than standard mass loss rate are able to populate the blue-HB (BHB) tail (Fig. 1,left). There are no observational evidences for a bimodal distribution of other parameters (He, CNO, etc.).


1989 ◽  
Vol 19 (5) ◽  
pp. 674-679 ◽  
Author(s):  
Barry R. Taylor ◽  
William F. J. Parsons ◽  
Dennis Parkinson

Decomposition of a slow-decaying litter type is expected to be faster in the presence of a nutrient-rich, fast-decaying litter type, but this effect has never been conclusively demonstrated for deciduous leaves. In a Rocky Mountain aspen forest, we followed decomposition of leaf litter of trembling aspen (Populustremuloides), a relatively slow-decomposing, nutrient-poor species, and green alder (Alnuscrispa), a nutrient-rich, faster-decomposing species, as well as a mixture of the two, for 2 years. Mass losses over the first winter were greatest for aspen alone, probably as a result of loss of solubles, but the mass loss rate overall was lowest for aspen (k = −0.191/year) and greatest for alder (k = −0.251/year). Mass loss rate for mixed litter (k = −0.245/year) was much closer to the rate for alder than for aspen, demonstrating a marked acceleration of mass loss rates in the mixed-litter bags. At these rates, 95% mass loss would be achieved by aspen, alder, and mixed litter in 14.5, 11.5, and 11.6 years, respectively.


Sign in / Sign up

Export Citation Format

Share Document