scholarly journals Radio Supernovae as Direct Evidence of Stellar Evolution in Real Time

1998 ◽  
Vol 11 (1) ◽  
pp. 367-367
Author(s):  
S.D. Van Dyk ◽  
M.J. Montes ◽  
K.W. Weiler ◽  
R.A. Sramek ◽  
N. Panagia

The radio emission from supernovae provides a direct probe of a supernova’s circumstellar environment, which presumably was established by mass-loss episodes in the late stages of the progenitor’s presupernova evolution. The observed synchrotron emission is generated by the SN shock interacting with the relatively high-density circumstellar medium which has been fully ionized and heated by the initial UV/X-ray flash. The study of radio supernovae therefore provides many clues to and constraints on stellar evolution. We will present the recent results on several cases, including SN 1980K, whose recent abrupt decline provides us with a stringent constraint on the progenitor’s initial mass; SN 1993J, for which the profile of the wind matter supports the picture of the progenitor’s evolution in an interacting binary system; and SN 1979C, where a clear change in presupernova mass-loss rate occurred about 104 years before explosion. Other examples, such as SNe 19941 and 1996cb, will also be discussed.

2015 ◽  
Vol 11 (A29B) ◽  
pp. 450-451
Author(s):  
Vikram V. Dwarkadas

AbstractRed Supergiants (RSGs) have for decades been assumed to be the progenitors of Type IIP supernovae (SNe). They are expected to have dense winds with mass-loss rates up to 10−4 M⊙ yr−1. We have created a database of available X-ray lightcurves of SNe. Type IIP SNe are found to have the lowest X-ray luminosities among all classes, which is surprising given the high mass-loss rate winds expected from their red supergiant progenitors, and therefore the high density medium into which Type IIP SNe are expected to expand into. We show that the low X-ray luminosity sets a limit on the mass-loss rate of the progenitor star which can collapse to become a RSG, which is about 10−5 M⊙ yr−1. This in turn can be used to set a limit on the initial mass of a RSG star which can become a Type IIP progenitor, which is about 19 M⊙. This is consistent with the limit obtained via direct optical progenitor identification. Optically identified progenitors of Type IIP SNe are found to be RSGs with masses less than about 17 M⊙ (Smartt (2009)). We discuss the implications of this result for stellar evolution, theorize on the fate of RSG stars with initial mass > 19 M⊙, and discuss what type of SNe they will produce at the end of their lifetime.


Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 89
Author(s):  
Efrat Sabach

We study the effects of a reduced mass-loss rate on the evolution of low metallicity Jsolated stars, following our earlier classification for angular momentum (J) isolated stars. By using the stellar evolution code MESA we study the evolution with different mass-loss rate efficiencies for stars with low metallicities of Z = 0 . 001 and Z = 0 . 004 , and compare with the evolution with solar metallicity, Z = 0 . 02 . We further study the possibility for late asymptomatic giant branch (AGB)—planet interaction and its possible effects on the properties of the planetary nebula (PN). We find for all metallicities that only with a reduced mass-loss rate an interaction with a low mass companion might take place during the AGB phase of the star. The interaction will most likely shape an elliptical PN. The maximum post-AGB luminosities obtained, both for solar metallicity and low metallicities, reach high values corresponding to the enigmatic finding of the PN luminosity function.


2019 ◽  
Vol 486 (4) ◽  
pp. 4671-4685 ◽  
Author(s):  
Wageesh Mishra ◽  
Nandita Srivastava ◽  
Yuming Wang ◽  
Zavkiddin Mirtoshev ◽  
Jie Zhang ◽  
...  

ABSTRACT Similar to the Sun, other stars shed mass and magnetic flux via ubiquitous quasi-steady wind and episodic stellar coronal mass ejections (CMEs). We investigate the mass loss rate via solar wind and CMEs as a function of solar magnetic variability represented in terms of sunspot number and solar X-ray background luminosity. We estimate the contribution of CMEs to the total solar wind mass flux in the ecliptic and beyond, and its variation over different phases of the solar activity cycles. The study exploits the number of sunspots observed, coronagraphic observations of CMEs near the Sun by SOHO/LASCO, in situ observations of the solar wind at 1 AU by WIND, and GOES X-ray flux during solar cycles 23 and 24. We note that the X-ray background luminosity, occurrence rate of CMEs and ICMEs, solar wind mass flux, and associated mass loss rates from the Sun do not decrease as strongly as the sunspot number from the maximum of solar cycle 23 to the next maximum. Our study confirms a true physical increase in CME activity relative to the sunspot number in cycle 24. We show that the CME occurrence rate and associated mass loss rate can be better predicted by X-ray background luminosity than the sunspot number. The solar wind mass loss rate which is an order of magnitude more than the CME mass loss rate shows no obvious dependency on cyclic variation in sunspot number and solar X-ray background luminosity. These results have implications for the study of solar-type stars.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 454-454 ◽  
Author(s):  
Cyril Georgy ◽  
Sylvia Ekström

AbstractThe red supergiant phase is an important phase of the evolution of massive star, as it mostly determines its final stages. One of the most important driver of the evolution during this phase is mass loss. However, the mass-loss rates prescription used for red supergiants in current stellar evolution models are still very inaccurate.Varying the mass-loss rate makes the star evolve for some time in yellow/blue regions of the HRD, modifying the number of RSGs in some luminosity ranges. Figure 1 shows how the luminosity distribution of RSGs is modified for various mass-loss prescriptions. This illustrates that it is theoretically possible to determine at least roughly what is the typical mass loss regime of RSGs in a stellar evolution perspective.


1993 ◽  
Vol 139 ◽  
pp. 191-191
Author(s):  
George H. Bowen

AbstractThe large-amplitude pulsation of long-period variables, together with a number of other interacting processes and phenomena, causes a rich variety of effects on the structure and behavior of the stars. Outflowing winds result, causing extensive mass loss, with profound consequences for stellar evolution. The present status of modeling calculations for LPVs will be discussed first, with various examples. Emphasis will be given to the great importance of complex, nonlinear, time-dependent interactions between things such as the waves and atmospheric shocks that result from pulsation; non-LTE radiative transfer; non-equilibrium chemistry; the growth, changing optical properties, and dynamics of grains; and radiation pressure on both grains and molecules. I will then survey the developing implications and insights from new results and from work now in progress. Some of these concern the structure and the behavior of individual stars (e.g. determination of the pulsation mode and limiting amplitude; properties of more massive stars); some relate to the evolution of individual stars (e.g. evolution of the wind and the mass loss rate; the wind and circumstellar region during helium shell flashes; effects of the star's metallicity); and some relate to the evolution of populations of stars (e.g. the white dwarf mass distribution). All of these, and many more, offer new perspectives and new understanding concerning the character of LPVs and their role in stellar evolution.


1981 ◽  
Vol 59 ◽  
pp. 125-130 ◽  
Author(s):  
A.G. Hearn

I assume that the purpose of this review of the theory of winds from early type stars is to summarize the way in which the mass loss rate of a star may be included in a calculation of stellar evolution. Let me summarize my conclusions. It is not possible. One can only use estimates of mass loss rates obtained from the observations. Even these give a large uncertainty. The observed mass loss rates for different stars of the same spectral type vary. Further the mass loss rates obtained by different methods for the same star differ. An extreme example of this is 9 Sgr. The mass loss rate derived from the radio observations is forty times greater than that derived from the U.V. and optical measurements (Abbott et al. 1980).


2003 ◽  
Vol 212 ◽  
pp. 218-219
Author(s):  
Julian M. Pittard ◽  
Michael F. Corcoran

We perform X-ray spectral fits to a recently obtained Chandra grating spectrum of η Carinae, one of the most massive and powerful stars in the Galaxy and which is strongly suspected to be a colliding wind binary system. The good fit that we obtain gives us further confidence in the binary hypothesis, and we find M ≈ 2.5 × 10–4 M⊙ yr–1 for the mass loss rate of η Car.


2011 ◽  
Vol 7 (S283) ◽  
pp. 80-82
Author(s):  
Mikako Matsuura

AbstractIt is important to properly describe the mass-loss rate of AGB stars, in order to understand their evolution from the AGB to PN phase. The primary goal of this study is to investigate the influence of metallicity on the mass-loss rate, under well determined luminosities. The luminosity of the star is a crucial parameter for the radiative driven stellar wind. Many efforts have been invested to constrain the AGB mass-loss rate, but most of the previous studies use Galactic objects, which have poorly known distances, thus their luminosities. To overcome this problem, we have studied mass loss from AGB stars in the Galaxies of the Local Group. The distance to the stars have been independently measured, thus AGB stars in these galaxies are ideal for understanding the mass-loss rate. Moreover, these galaxies have a lower metallicity than the Milky Way, providing an ideal target to study the influence of metallicity on the mass-loss rate. We report our analysis of mass loss, using the Spitzer Space Telescope and the Herschel Space Observatory. We will discuss the influence of AGB mass-loss on stellar evolution, and explore AGB and PN contribution to the lifecycle of matter in galaxies.


2010 ◽  
Vol 6 (S272) ◽  
pp. 348-353 ◽  
Author(s):  
David H. Cohen ◽  
Emma E. Wollman ◽  
Maurice A. Leutenegger

AbstractX-rays give direct evidence of instabilities, time-variable structure, and shock heating in the winds of O stars. The observed broad X-ray emission lines provide information about the kinematics of shock-heated wind plasma, enabling us to test wind-shock models. And their shapes provide information about wind absorption, and thus about the wind mass-loss rates. Mass-loss rates determined from X-ray line profiles are not sensitive to density-squared clumping effects, and indicate mass-loss rate reductions of factors of 3 to 6 over traditional diagnostics that suffer from density-squared effects. Broad-band X-ray spectral energy distributions also provide mass-loss rate information via soft X-ray absorption signatures. In some cases, the degree of wind absorption is so high, that the hardening of the X-ray SED can be quite significant. We discuss these results as applied to the early O stars ζ Pup (O4 If), 9 Sgr (O4 V((f))), and HD 93129A (O2 If*).


Sign in / Sign up

Export Citation Format

Share Document