Oxygen Reduction Reaction of PEMFC Cathode by Molecular Simulations

2010 ◽  
Vol 105-106 ◽  
pp. 698-700
Author(s):  
Chuang Liu ◽  
Yu Hou Wu ◽  
Hong Sun ◽  
Yu Lan Tang

Cathode catalyst layer plays an important role in PEMFC. Electrochemical reaction in cathode catalyst layer is a control process for the performance in PEMFC. In this paper, oxygen reduction reaction (ORR) is studied by molecular simulations based on a series pathway which consist of four steps. We calculated the free energy of four steps respectively by molecular simulations. Comparing free energy of our steps, we found that the fourth step can release more energy than the other steps. At the same time, we found that the energy released in ORR is decreased with the increase of temperature. The process of the first step in the series pathway release less energy than that of other steps. The results are very helpful for optimization of construction in the cathode and improving performance of PEM fuel cell.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2529 ◽  
Author(s):  
Baosheng Bai ◽  
Yi-Tung Chen

In this paper, a numerical model of the kinetic Monte Carlo (KMC) method has been developed to study the oxygen reduction reaction (ORR) that occurs inside the cathode catalyst layer (CCL). Firstly, a 3-D model of the CCL that consists of Pt and carbon spheres is built using the sphere packing method; secondly, an efficient procedure of the proton-oxygen reaction process is developed and simulated. In the proton-oxygen reaction process, all of the continuous movements of protons and oxygen are considered. The maximum reaction distance is determined to be 8 Å. The input pressures of protons and oxygen are represented by the number of spheres of the species. The value of the current density is calculated based on the amount of reaction during the interval time. Indications are that the results of the present model match reasonably well with the published results. A new way to apply the KMC method in the proton exchange membrane fuel cell (PEMFC) research field is developed in this paper.


2020 ◽  
Vol 49 (48) ◽  
pp. 17594-17604
Author(s):  
Debanjali Ghosh ◽  
Shaikh Parwaiz ◽  
Paritosh Mohanty ◽  
Debabrata Pradhan

Solvothermally synthesized diverse shaped CeO2 nanostructures show excellent oxygen reduction reaction activity, suitable as a cathode catalyst in fuel cell.


MRS Advances ◽  
2018 ◽  
Vol 3 (53) ◽  
pp. 3171-3179 ◽  
Author(s):  
Indrasis Das ◽  
Md. T. Noori ◽  
Gourav Dhar Bhowmick ◽  
M.M. Ghangrekar

ABSTRACTOverpotential losses on cathode during oxygen reduction reaction (ORR) causes serious performance depletion in microbial fuel cells (MFCs). High cost of existing platinum based noble catalysts is one of the main reason for growing interest in the research of low cost sustainable cathode catalysts to improve ORR in order to enhance power generation from MFCs. The present study demonstrates application of low-cost bimetallic ferrite, Co0.5Zn0.5Fe2O4, as a cathode catalyst in MFC. The electrochemical tests of cathode having this catalyst revealed an excellent cathodic current response of 25.76 mA with less charge transfer resistance of 0.7 mΩ, showing remarkable catalytic activity. The MFC using this catalyst on cathode could generate a power density of 172.1 ± 5.2 mW/m2, which was found to be about 10 times higher than the power density of 15.2 ± 1.3 mW/m2 obtained from a MFC using only acetelyne black (AB) on cathode and noted even higher than the power density produced by MFC with Pt/C cathode (151.3 ± 2.8 mW/m2). In addition, the wastewater treatment in terms of chemical oxygen demand (COD) removal efficiency of MFC with Co0.5Zn0.5Fe2O4 on cathode was found to be better (87 %) among the tested MFCs. Hence, the results obtained from this study illustrates the applicability of Co0.5Zn0.5Fe2O4 as an excellent and suitable cathode catalyst for scaling up of MFCs.


RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 25877-25881 ◽  
Author(s):  
Ling Li ◽  
Mingkun Wang ◽  
Ning Cui ◽  
Yuedi Ding ◽  
Qingling Feng ◽  
...  

Incorporation of nanophase ceria into the cathode catalyst Pt/C was used as alternative cathode catalysts for the oxygen reduction reaction in an air-cathode single-chamber microbial fuel cell (SCMFC) for the first time.


2015 ◽  
Vol 3 (18) ◽  
pp. 9675-9681 ◽  
Author(s):  
Wen-Ping Wu ◽  
Arun Prakash Periasamy ◽  
Guan-Lin Lin ◽  
Zih-Yu Shih ◽  
Huan-Tsung Chang

One-pot synthesized PdCu nanosponges (NSs) are separately used as a cathode catalyst for the oxygen reduction reaction in alkaline media and for enzymeless detection of glucose with high catalytic activity, stability, and durability.


2019 ◽  
Vol 44 (2) ◽  
pp. 122-131
Author(s):  
Bangchang Qin ◽  
Yang Tian ◽  
Pengxiang Zhang ◽  
Zuoyin Yang ◽  
Guoxin Zhang ◽  
...  

Density functional theory calculations were employed to investigate the electrochemical oxygen reduction reaction on the (111) and (100) surfaces of cobalt(II) oxide. Different mechanisms were applied to evaluate the oxygen reduction reaction performance of cobalt(II) oxide structures in terms of the Gibbs free energy and density of states. A variety of intermediate structures based on associative and dissociative mechanisms were constructed and optimized. As a result, we estimated the catalytic activity by calculating the free energy of the intermediates and constructing free energy diagrams, which suggested that the oxygen reduction reaction Gibbs free energy on cobalt(II) oxide (111) and (100) surfaces based on the associative mechanism is smaller than that based on the dissociative mechanism, demonstrating that the associative mechanism should be more likely to be the oxygen reduction reaction pathway. Moreover, the theoretical oxygen reduction reaction activity on the cobalt(II) oxide (111) surface was found to be higher than that on the cobalt(II) oxide (100) surface. These results shed light on the rational design of high-performance cobalt(II) oxide oxygen reduction reaction catalysts.


2021 ◽  
Author(s):  
Yu-Ping Ku ◽  
Konrad Ehelebe ◽  
Markus Bierling ◽  
Florian Speck ◽  
Dominik Seeberger ◽  
...  

Abstract The electrochemical activity of modern Fe-N-C electrocatalysts in alkaline media is on par with that of platinum. For successful application in fuel cells, however, also high durability and longevity must be demonstrated. Currently, design and synthesis of simultaneously active and stable platinum group metal-free electrocatalysts is hindered by a limited understanding of Fe-N-C degradation, especially under operando conditions. In this work, using a gas diffusion electrode half-cell coupled with inductively coupled plasma mass spectrometry setup, Fe dissolution is studied under more realistic conditions, i.e. real catalyst layer and current densities up to 125 mA·cm-2. Varying the rate of oxygen reduction reaction, we show a remarkable correlation between Faradaic electrode charge and Fe dissolution. This finding is rationalized assuming that oxygen reduction and Fe dissolution reactions are interlinked, likely through a common intermediate formed during the Fe3+/Fe2+ redox transitions in coordinated Fe cations. Moreover, such linear correlation allows an introduction and use of a simple metric (stability number). Hence, in the current work, a powerful tool for a more applied stability screening of different electrocatalysts is introduced, which allows on the one hand fast performance investigations under more realistic conditions, and on the other hand more advanced mechanistic understanding of Fe-N-C degradation in catalyst layers.


Sign in / Sign up

Export Citation Format

Share Document