Modal Analysis Calculation and Simulation of Ramming Chain

2014 ◽  
Vol 1055 ◽  
pp. 234-237
Author(s):  
Peng Cheng Yan ◽  
Chi Yu Hao ◽  
Hua Gang Sun ◽  
Chao Liu

In order to solve a problem that the running of ramming chain is unstable and master each order natural frequency and deformation characteristics of the chain, the method of theoretical calculation and finite element analysis with software ANSYS is used on the natural frequency of the calculation and analysis. By comparing the data obtained from two methods to verify the correctness of the finite element model, the model is used to analyze natural frequencies and corresponding vibration mode of the ramming chain. The results show that under the low order natural frequency, the main deformation of the ramming chain is the lateral bending, longitudinal bending and torsion deformation, so the results provide the basis to master the deformation of the chain.

2013 ◽  
Vol 655-657 ◽  
pp. 1119-1122
Author(s):  
Sheng Lin ◽  
Chun Wang

A novel three-axis compliant mechanism is presented. Three original constraints are selected from the freedom and constraint complement topology chart. A compliant mechanism with three rotation freedoms is designed. Constraint 2 and Constraint 3 is designed as a whole to improve the precision and natural frequency. The finite element model is established. And the natural frequency and the main vibration mode are obtained. The deformation of the rotation axis is small. The input and output of the compliant mechanism is decoupled.


2011 ◽  
Vol 2-3 ◽  
pp. 972-977
Author(s):  
Xue Jun Li ◽  
Bai Hui Yao

Takes the comprehensive fault simulation testbed of Spectra Quest as an object, the finite element model of rotor-rolling bearing-base system is constructed by finite element analysis software ANSYS. Modes of rotor-rolling bearing system and rotor-rolling bearing-base system are analysed, the influence of base is researched by comparing their natural frequency and vibration mode. The influence of bearing rigidity to system mode is studied by comparing the natural frequency of rotor-rolling bearing-base system with different bearing rigidity.


2020 ◽  
Vol 38 (1A) ◽  
pp. 25-32
Author(s):  
Waleed Kh. Jawad ◽  
Ali T. Ikal

The aim of this paper is to design and fabricate a star die and a cylindrical die to produce a star shape by redrawing the cylindrical shape and comparing it to the conventional method of producing a star cup drawn from the circular blank sheet using experimental (EXP) and finite element simulation (FES). The redrawing and drawing process was done to produce a star cup with the dimension of (41.5 × 34.69mm), and (30 mm). The finite element model is performed via mechanical APDL ANSYS18.0 to modulate the redrawing and drawing operation. The results of finite element analysis were compared with the experimental results and it is found that the maximum punch force (39.12KN) recorded with the production of a star shape drawn from the circular blank sheet when comparing the punch force (32.33 KN) recorded when redrawing the cylindrical shape into a star shape. This is due to the exposure of the cup produced drawn from the blank to the highest tensile stress. The highest value of the effective stress (709MPa) and effective strain (0.751) recorded with the star shape drawn from a circular blank sheet. The maximum value of lamination (8.707%) is recorded at the cup curling (the concave area) with the first method compared to the maximum value of lamination (5.822%) recorded at the cup curling (the concave area) with the second method because of this exposure to the highest concentration of stresses. The best distribution of thickness, strains, and stresses when producing a star shape by


2014 ◽  
Vol 721 ◽  
pp. 131-134
Author(s):  
Mi Mi Xia ◽  
Yong Gang Li

To research the load upper bracket of Francis hydroelectric unit, then established the finite-element model, and analyzed the structure stress of 7 operating condition points with the ANSYS software. By the strain rosette test, acquired the data of stress-strain in the area of stress concentration of the upper bracket. The inaccuracy was considered below 5% by analyzing the contradistinction between the finite-element analysis and the test, and match the engineering precision and the test was reliable. The finite-element method could be used to judge the stress of the upper bracket, and it could provide reference for the Structural optimization and improvement too.


2013 ◽  
Vol 281 ◽  
pp. 165-169 ◽  
Author(s):  
Xiang Lei Zhang ◽  
Bin Yao ◽  
Wen Chang Zhao ◽  
Ou Yang Kun ◽  
Bo Shi Yao

Establish the finite element model for high precision grinding machine which takes joint surface into consideration and then carrys out the static and dynamic analysis of the grinder. After the static analysis, modal analysis and harmonic response analysis, the displacement deformation, stress, natural frequency and vibration mode could be found, which also helps find the weak links out. The improvement scheme which aims to increase the stiffness and precision of the whole machine has proposed to efficiently optimize the grinder. And the first natural frequency of the optimized grinder has increased by 68.19%.


Author(s):  
J. Poirier ◽  
P. Radziszewski

The natural frequencies of circular saws limit the operating speeds of the saws. Current industry methods of increasing natural frequency include pretensioning, where plastic deformation is induced into the saw. To better model the saw, the finite element model is compared to current software for steel saws; C-SAW, a software program that calculates frequencies for stiffened circular saws. Using C-SAW and the finite element method the results are compared and the finite element method is validated for steel saws.


2020 ◽  
Vol 198 ◽  
pp. 03025
Author(s):  
Kang Le ◽  
Zhang tingjun ◽  
Tong Junhui ◽  
Chen Di ◽  
Qian Baoyuan

Thermal drainage consolidation method is a new technology of soft foundation treatment, which involves the coupling of thermo-hydro-mechanical field, and the action mechanism is complex. In this paper, taking the model test of thermal drainage consolidation as the prototype, the finite element model of thermal drainage consolidation is established by using Abaqus software, then, the numerical results are obtained and are compared with the results of model test, and the reliability of the numerical model is verified. The results show that when the applied load is constant, the higher the temperature is, the faster the consolidation speed of soil is, but with the increase of temperature, the consolidation effect of the same temperature difference will gradually weaken. In addition, the thermal drainage consolidation method can achieve the best treatment effect when the temperature of the soil reaches 60 ℃.


2010 ◽  
Vol 102-104 ◽  
pp. 17-21
Author(s):  
Bin Zhao

In order to study the static and dynamical characteristics of the crankshaft, ANSYS software was used to carry out the corresponding calculations. The entity model of the crankshaft was established by UG software firstly, and then was imported into ANSYS software for meshing, and then the finite element model of the crankshaft was constructed. The crankshaft satisfied the requirement of stiffness and strength through static analysis. The top six natural frequencies and corresponding shapes were acquired through modal analysis, and the every order critical rotating speed of the crankshaft was calculated. The fatigue life of the crank was calculated by fatigue module of ANSYS software finally. These results offered the theoretical guidance for designing, manufacturing and repairing the crankshaft.


1999 ◽  
Author(s):  
Richard B. Englund ◽  
David H. Johnson ◽  
Shannon K. Sweeney

Abstract A finite element analysis (FEA) model of the interaction of a nut and bolt was used to investigate the effects of sliding, friction, and yielding in a bolted connection. The finite element model was developed as a two-dimensional, axisymmetric system, which allowed the study of axial and radial loading and displacements. This model did not permit evaluation of hoop or torsional effects such as tightening or the helical thread form. Results presented in this paper include the distribution of load between consecutive threads, the relative sliding along thread faces, and the stress distribution and regions of yielding in the model. Finally, a comparison to previous, linear analysis work and to published experimental data is made to conclude the paper.


2014 ◽  
Vol 945-949 ◽  
pp. 1143-1149
Author(s):  
Hai Xia Sun ◽  
Hua Kai Wei ◽  
Xiao Fang Zhao ◽  
Jia Rui Qi

The finite element model of the concrete mixing truck’s frame is builded by using shell as basic element, and the process of building the finite element model of the balance suspension is introduced in detail. Based on this, frame’s stress on five types of typical operating conditions are calculated by using the finite element analysis software, NASTRAN, and results can show the dangerous position and the maximum stress position on the frame. The analysis result on structural strength can provide the basis for further improving the frame structure.


Sign in / Sign up

Export Citation Format

Share Document