The Finite Element Analysis and Optimization for the Grinder Based on the Joint Surface

2013 ◽  
Vol 281 ◽  
pp. 165-169 ◽  
Author(s):  
Xiang Lei Zhang ◽  
Bin Yao ◽  
Wen Chang Zhao ◽  
Ou Yang Kun ◽  
Bo Shi Yao

Establish the finite element model for high precision grinding machine which takes joint surface into consideration and then carrys out the static and dynamic analysis of the grinder. After the static analysis, modal analysis and harmonic response analysis, the displacement deformation, stress, natural frequency and vibration mode could be found, which also helps find the weak links out. The improvement scheme which aims to increase the stiffness and precision of the whole machine has proposed to efficiently optimize the grinder. And the first natural frequency of the optimized grinder has increased by 68.19%.

2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


2011 ◽  
Vol 697-698 ◽  
pp. 97-101
Author(s):  
Chao Hao Wang ◽  
Yong Liang Chen ◽  
Jin Ping Pang ◽  
Da Wei Zhang ◽  
G.X. Pan

Dynamic analysis and modal test were conducted on a vertical grinding machine. The mathematical model of joint surface parameter identification between the bed and the column was established in CAD/CAE integrated environment. Based on the results of dynamic analysis and modal test, the parameters of joint surface were identified and the finite element model was accurately created. Then, the weak bodies of the original machine were improved. According to the finite element analysis of the improved machine, the performances of the new machine were better than the original machine.


2016 ◽  
Vol 693 ◽  
pp. 1169-1176
Author(s):  
Yong Wang ◽  
Qing Jian Liu ◽  
Zhi Qiang Yu ◽  
Yu Long Wang ◽  
Yue Zhang ◽  
...  

To avoid the influence of column vibration on machining precision, it is necessary to simulate the stiffness characteristics of the columns for CNC grinding machine, and to optimize the structure of the column by using sensitivity method. Based on structural characteristics of the grinding machine and structural characteristics of the columns, a finite element model is established to simulate and calculate the first-four models of the columns. In order to optimize the structure of the column, a sensitivity analysis is made to calculate the sensitivity of natural frequencies and mass of the column to each panel and ribbed plate. Considering a weighting factor and taking integrated natural frequency of the column as an optimization objective, the mass of the column as a constraint, an optimization equation is established. By a quadratic programming method, the parameter optimization of the column is got as follows: the mass decreased by 4%, integrated natural frequency increased by 2%. Dynamic stiffness of the column has been optimized by harmonic response analysis, the results showed that the largest column in the Z resonance peak reduced by 8.44%.


2011 ◽  
Vol 194-196 ◽  
pp. 1977-1981
Author(s):  
Dong Qiang Gao ◽  
Zhi Yun Mao ◽  
Zhong Yan Li ◽  
Fei Zhang

The modal analysis and harmonic response analysis of the machine tool table with periodic truss-core structures are analyzed and calculated by finite element analysis software-ANSYS Workbench, then we get the finite element analysis results. After comparing the results with finite element analysis results of the original machine tool table, we come to the conclusion that the dynamic properties of the machine tool table with periodic truss-core structures are better than the original machine tool table’s. It makes a base for optimized design and remanufacturing.


2012 ◽  
Vol 201-202 ◽  
pp. 907-911 ◽  
Author(s):  
Feng Yi Feng ◽  
Yu Guo Cui ◽  
Fei Xue ◽  
Liang En Wu

Based on the requirements of that the finger can move in parallel, and the displacement of the finger can be detected, the micro-gripper driven by piezoelectric actuator is designed based on the displacement amplification structure with the flexure hinge. The static analysis, the modal analysis, the harmonic response analysis and the transient response analysis of the micro-gripper are carried out by using the finite element analysis software ANSYS. The results of the finite element analysis show that the finger is fully able to move in parallel, and can detect the displacement of the finger; the maximum displacement of the finger is about 101 μm, the first natural frequency is about 130 Hz; the finger tip displacement under the 1 μm step input is about 20 μm, the fingertip vibration is about ±2 μm.


2011 ◽  
Vol 411 ◽  
pp. 54-58
Author(s):  
Tao Feng ◽  
Xiao Li Jin

Based on the analytical theories of the joint surface, finite element modeling method of two kinds of joint about rails and bolts were studied. The finite element model of the engraving machine is built and its static and dynamic characterization is analyzed by the universal ANSYS. By this way, unreasonable structural design of engraving machine can be conducted, which will provide support for the optimization design of the structure. The correctness of the modeling method of joint surface is confirmed.


2010 ◽  
Vol 97-101 ◽  
pp. 3671-3676
Author(s):  
Li Zhang ◽  
Liang Wei Zhong

Modal analysis of machine center was carried out by means of finite-element analysis (FEA) method to get its characteristics and to improve its machining precision. Based on this, harmonic response analysis was processed to evaluate its vibration when the cycle load caused by the machining force was applied on the main shaft of machine center, which was used to provide clues for avoiding resonance vibration and ameliorating design.


2010 ◽  
Vol 44-47 ◽  
pp. 1558-1562 ◽  
Author(s):  
Xiao Ping Chen ◽  
Ru Fu Hu ◽  
Shu Hua Zheng

Aiming at the complex mechanical systems for the prediction of the fatigue limit load requirements, this paper examines the relationship among finite element analysis model and the performance models. And a finite element modeling method for fatigue analysis is proposed. The finite element model can support static, modal, fatigue, and multi-body dynamic response analysis in parallel and collaboration. This method helps improve the fatigue limit load analysis.


2010 ◽  
Vol 156-157 ◽  
pp. 1360-1365
Author(s):  
Qiu Lin Pu ◽  
Xiao Diao Huang ◽  
Wen Zheng Ding

In this paper,the ball screw feeding system’s dynamic characteristics of a numerical remanufacture grinding machine is analyzed using the FEM. Discusses the modeling method of ball screw system into the finite element model and established the combination of finite element model. Through the modal analysis and the harmonious response analysis, the nature frequency and vibration mode of the feeding system and typical operating conditions of excitation in the harmonic responsehave have been gotten,thus the dependable basis for the construction’s optimization and dynamic function’s increasing of the feeding system is provided, ensure the numerical remanufacture will be success.


2012 ◽  
Vol 605-607 ◽  
pp. 1519-1522
Author(s):  
Lei Sun ◽  
Xia Wang

The modal analysis and harmonic response analysis of milling head box were done by means of finite element method. Find out its characteristics of vibration modal. The analysis is conducive to the design of the milling head box of machine tool. It makes a base for optimized design and remanufacturing.


Sign in / Sign up

Export Citation Format

Share Document