Nonlinear Dynamic Response of Piezoelectric Beam Reinforced with BNNTs under Electro-Thermo-Mechanical Loadings

2014 ◽  
Vol 1065-1069 ◽  
pp. 1083-1086
Author(s):  
Jin Hua Yang ◽  
Wen Liang Fan

This paper presents an investigation on the nonlinear dynamic response of piezoelectric beam reinforced with boron nitride nanotubes (BNNTs) under combined electro-thermo-mechanical loadings. By employing nonlinear strain and utilizing piezoelectric theory, the constitutive relations of the piezoelectric beam reinforced with BNNTs are established. Then the dynamic governing equations of the structure are derived through variational principle and resolved by applying the finite difference method. In numerical examples, the effects of geometric nonlinear, voltage etc. on the nonlinear dynamic response of piezoelectric beam reinforced with BNNTs are discussed.

2012 ◽  
Vol 204-208 ◽  
pp. 4698-4701
Author(s):  
Jin Hua Yang ◽  
De Liang Chen

Abstract. On the basis of the nonlinear plate-shell and piezoelectric theory, the governing equations of motion for axisymmetrical piezoelectric delaminated cylindrical shell under hygrothermal conditions were derived. The governing equation of transverse motion was modified by contact force and thus the penetration between two delaminated layers could be avoided. The whole problem was resolved by using the finite difference method. In calculation examples, the effects of delamination length, depth and amplitude of load on the nonlinear dynamic response of the axisymmetrical piezoelectric delaminated shell under hygrothermal conditions were discussed in detail.


2014 ◽  
Vol 490-491 ◽  
pp. 403-411
Author(s):  
Yi Ming Fu ◽  
Xue Fei Shao

During the past decades, increasing requirement in aircraft for high-performance, lightweight structures have caused strong interests on the development of fiber-metal laminates (FMLs), which are manufractured from thin layers of glass fibre reinforced composite and alluminium alloy. In this paper, the nonlinear dynamic response problem of the FML plate subjected to unstable temperature with interfacial damage is analyzed. Based on the weak bonded theory, the interfacial constitutive relations of the FML are constructed. According to the Hamiltons variance principle, the nonlinear motion equations of the FML with interfacial damages subjected to the unstable thermal field are obtained. And then, the finite difference, Newmark-and the iteration method are applied to solve the nonlinear motion equations. In the numerical examples, the effects of the interface damage, the amplitude and frequency of imposed loads and the temperature fields on the nonlinear dynamic response of the FML plates are investigated. And in conclusion, the effects of various type of temperature on the nonlinear dynamic response of FML plate are different obviously.


1990 ◽  
Vol 112 (2) ◽  
pp. 202-205
Author(s):  
R. S. Srinivasan ◽  
L. S. Ramachandra

In the present study, the geometrically nonlinear dynamic response of bimodulus annular and circular plates is obtained. The governing equations of the problem are formulated using the energy method and are solved by using annular finite elements spacewise. The integration in the time domain is accomplished by the Wilson θ method. Numerical work has been done for different hole sizes under various edge conditions and loadings.


2006 ◽  
Vol 324-325 ◽  
pp. 299-302 ◽  
Author(s):  
Yi Ming Fu ◽  
Xian Qiao Wang

Based on the Talreja’s tensor valued internal state variables damage model and the Helmhotlz free energy of piezoelectric material, the constitutive relations of the piezoelectric plates with damage are derived. Then, the nonlinear dynamic equations of the piezoelectric plates considering damage are established. By using the finite difference method and the Newmark scheme, these equations are solved and the effects of damage and electric loads on the nonlinear dynamic response of piezoelectric plates are discussed.


Sign in / Sign up

Export Citation Format

Share Document