Synthesis of Cobalt Nanopowder Using Surfactants of Different Nature

2015 ◽  
Vol 1085 ◽  
pp. 7-11
Author(s):  
Evgeny Kolesnikov ◽  
Vera Levina ◽  
Anna Godymchuk ◽  
Denis V. Kuznetsov ◽  
Nikolay Polushin

The synthesis of controlled dispersity nanopowders is a vital nanotechnology task. This paper describes how the type of surfactants used during the hydroxide precursor Co (OH)2 precipitation influences the dispersity of cobalt nanopowder obtained by the process of hydroxide reduction. It has been determined that the usage of surfactants may both increase and decrease the nanopowders dispersity: when using 0.1 wt.% “cetylpyridinium chloride – no surfactants – EDTA sodium salt – polyethylene glycol – sodium lauryl sulfate” surfactant solutions, during the precipitation process the specific surface of the obtained metallic nanopowder was equal to “3.7 – 4.5 – 5.0 – 6.0 – 9.5 m2/g”, respectively.

2010 ◽  
Vol 29 (3_suppl) ◽  
pp. 115S-132S ◽  
Author(s):  
Monice Fiume ◽  
Wilma F. Bergfeld ◽  
Donald V. Belsito ◽  
Curtis D. Klaassen ◽  
James G. Marks ◽  
...  

Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.


Author(s):  
M. V. Bidevkina ◽  
M. I. Golubeva ◽  
A. V. Limantsev ◽  
I. N. Razumnaya ◽  
T. N. Potapova ◽  
...  

Sodium lauryl sulfate is the most common surfactant used in the production of detergents, chloroprene rubber, plastics, artificial furs and in pharmaceutical industry. Sodium lauryl sulfate is a moderately hazardous substance when introduced into the stomach (DL50 for white mice and rats is in the range of 2086-2700 mg/kg), has a pronounced local irritant effect on the skin and mucous membranes of the eyes, has a skin-resorptive, sensitizing and pronounced cumulative effects. The threshold for acute inhalation action is set at 15,3 mg/m3 for changes in the function of the nervous system and irritating effects on the mucous membranes of the upper respiratory tract (an increase in the total number of cells in the nasal flushes).Recommended for approval tentative safe exposure level of sodium lauryl sulfate in the air of the working area is 0.2+ mg/m3 (aerosol).


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Gongpu Wen ◽  
Kun Chen ◽  
Yanhong Zhang ◽  
Yue Zhou ◽  
Jun Pan ◽  
...  

AbstractA novel strategy was proposed to fabricate alkali-resistant PVDF membrane via sodium lauryl sulfate (SDS) attached to the surface of membrane and immobilized by UV-curable polyester acrylate and tri(propylene glycol) diacrylate (TPGDA). The attached anionic surfactant, SDS, on the membrane surface can resist the alkali corrosion by NaOH, and the curing of the resin can immobilize the SDS on the membrane firmly. Due to the unique alkali resistance of SDS and resin formed, the UV-curable resin-modified PVDF membrane showed greatly enhanced alkali-resistant ability. Characterization of SEM and FTIR showed that polyester acrylate and TPGDA were cured successfully under the action of 1-hydroxycyclohexyl phenyl ketone (184) and ultraviolet light. Whiteness, differential scanning calorimeter and X-ray photoelectron spectrometer characterization showed that the modified PVDF membrane had a lower degree of dehydrofluorination than the pristine PVDF membrane after alkali treatment. Results of the detailed alkali-resistant analysis indicated that the F/C ratio of the UV-curable resin-modified PVDF membrane decreased by 2.6% after alkali treatment compared to pristine PVDF membrane decreased by 19.28%. The alkali-resistant performance was mainly attributed to the immobilized SDS. This study provided a facile and scalable method for designing alkali-resistant PVDF membrane, which shows a promising potential in the treatment of alkaline wastewater and alkaline-cleaning PVDF membrane.


1967 ◽  
Vol 50 (4) ◽  
pp. 847-849
Author(s):  
John Wiskerchen

Abstract A method is given for the quantitative determination of sodium lauryl sulfate in liquid, frozen, powdered, or flake-dried egg white. The egg white is dissolved in water and the protein is precipitated with ethanol and filtered off. The filtrate is evaporated, the residue is dissolved in water, and the pH is adjusted to 5.0. Total alkyl sulfates are titrated with standard benzethonium chloride solution in the presence of chloroform with bromphenol blue indicator. Results are calculated as sodium lauryl sulfate. The formation of the bromphenol bluebenzethonium chloride complex, when excess benzethonium chloride is present, is taken as the end point. The blue-green complex is soluble in the chloroform. Overall recoveries of sodium lauryl sulfate from egg whites ranged from 94 to 100%. Collaborative study of the method is recommended.


Sign in / Sign up

Export Citation Format

Share Document