Effect of Aging on Phase Transition Behavior of Ti50Ni15Pd25Cu10 High Temperature Shape Memory Alloys

2015 ◽  
Vol 1101 ◽  
pp. 177-180 ◽  
Author(s):  
Saif Ur Rehman ◽  
Mushtaq Khan ◽  
Liaqat Ali ◽  
Syed Husain Imran Jaffery

Formation of Ni4Ti3 precipitates during aging of Ni-rich binary NiTi shape memory alloys and its effect on transition behavior during transformation from austenite to martensite phase has been studied extensively. However for equi-atomic NiTi-based quaternary high temperature shape memory alloy, two-stage martensitic transformation was detected for the first time. The Ti50Ni15Pd25Cu10 high temperature shape memory alloys were investigated for the hardness and transformation temperatures at aging temperature of 550°C. Aging at 550°C for 6 h resulted in remarkable increase in the hardness, whereas the phase transformation temperatures decreased significantly. During forward transformation from austenite to martensite, two-stage martensitic transformation; B2 (cubic) → R-phase and R-phase → B19 (orthorhombic) was observed.

2007 ◽  
Vol 546-549 ◽  
pp. 2241-2244 ◽  
Author(s):  
Yun Qing Ma ◽  
Cheng Bao Jiang ◽  
Yan Li ◽  
Cui Ping Wang ◽  
Xing Jun Liu

A strong need exists to develop new kinds of high-temperature shape-memory alloys. In this study, two series of CoNiGa alloys with different compositions have been studied to investigate their potentials as high-temperature shape-memory alloys, with regard to their microstructure, crystal structure, and martensitic transformation behavior. Optical observations and X-ray diffractions confirmed that single martensite phase was present for low cobalt samples, and dual phases containing martensite and γ phase were present for high cobalt samples. It was also found that CoNiGa alloys in this study exhibit austenitic transformation temperatures higher than 340°C, showing their great potentials for developing as high-temperature shape-memory alloys.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 798 ◽  
Author(s):  
Yuki Hattori ◽  
Takahiro Taguchi ◽  
Hee Kim ◽  
Shuichi Miyazaki

Ti–Ni–Pd shape memory alloys are promising candidates for high-temperature actuators operating at above 373 K. One of the key issues in developing high-temperature shape memory alloys is the degradation of shape memory properties and dimensional stabilities because plastic deformation becomes more pronounced at higher working temperature ranges. In this study, the effect of the Ti:(Ni + Pd) atomic ratio in TixNi70−xPd30 alloys with Ti content in the range from 49 at.% to 52 at.% on the martensitic transformation temperatures, microstructures and shape memory properties during thermal cycling under constant stresses were investigated. The martensitic transformation temperatures decreased with increasing or decreasing Ti content from the stoichiometric composition. In both Ti-rich and Ti-lean alloys, the transformation temperatures decreased during thermal cycling and the degree of decrease in the transformation temperatures became more pronounced as the composition of the alloy departed from the stoichiometric composition. Ti2Pd and P phases were formed during thermal cycling in Ti-rich and Ti-lean alloys, respectively. Both Ti-rich and Ti-lean alloys exhibited superior dimensional stabilities and excellent shape memory properties with higher recovery ratio and larger work output during thermal cycling under constant stresses when compared with the alloys with near-stoichiometric composition.


1997 ◽  
Vol 12 (9) ◽  
pp. 2288-2297 ◽  
Author(s):  
J. Font ◽  
J. Muntasell ◽  
J. Pons ◽  
E. Cesari

The effects of thermal cycling through the martensitic transformation have been studied in three Cu–Al–Ni–Mn–B high temperature shape memory alloys. An increase of the martensitic transformation temperatures with the number of cycles (up to ∼7 K after 60 cycles) has been generally observed by DSC measurements. The microstructure of these alloys is rather complicated, with the presence of big manganese or aluminum boride particles and small boron precipitates, as well as the formation of dislocations during thermal cycling. By means of aging experiments, it has been shown that the evolution of transformation temperatures during cycling is mainly due to the step-by-step aging in parent phase accompanying the thermal cycling, and that the dislocations formed during cycling have only a very small effect, at least up to 60 cycles.


Metals ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 511 ◽  
Author(s):  
Matthew Carl ◽  
Jesse Smith ◽  
Brian Van Doren ◽  
Marcus Young

2021 ◽  
Vol 1016 ◽  
pp. 1802-1810
Author(s):  
Hiromichi Matsuda ◽  
Masayuki Shimojo ◽  
Hideyuki Murakami ◽  
Yoko Yamabe-Mitarai

As new generation of high-temperature shape memory alloys, high-entropy alloys (HEAs) have been attracted for strong solid-solution hardened alloys due to their severe lattice distortion and sluggish diffusion. TiPd is the one potential high-temperature shape memory alloys because of its high martensitic transformation temperature above 500 °C. As constituent elements, Zr expected solid-solution hardening, Pt expected increase of transformation temperature, Au expected keeping transformation temperature, and Co expected not to form harmful phase. By changing the alloy composition slightly, two HEAs and two medium entropy alloys (MEAs) were prepared. Only two MEAs, Ti45Zr5Pd25Pt20Au5, and Ti45Zr5Pd25Pt20Co5 had the martensitic transformation. The perfect recovery was obtained in Ti45Zr5Pd25Pt20Co5 during the repeated thermal cyclic test, training, under 200 MPa. On the other hand, the small irrecoverable strain was remained in Ti45Zr5Pd25Pt20Au5 during the training under 150 MPa because of the small solid-solution hardening effect. It indicates that Ti45Zr5Pd25Pt20Co5 is the one possible HT-SMA working between 342 and 450 °C.


2014 ◽  
Vol 1019 ◽  
pp. 379-384
Author(s):  
M.P. Mashamaite ◽  
Hasani Rich Chauke ◽  
Rosinah Mahlangu ◽  
P.E. Ngoepe

Shape memory alloys (SMAs) are a fascinating group of metals that have two remarkable properties, the shape memory effect and superelasticity. The TiPt structure with the B2 phase has been reported to undergo a reversible displacive transformation to B19 martensite at about 1200K. However, this system could serve in principle as the basis of high-temperature shape memory alloys. Molecular dynamics study of martensitic transformation in platinum titanium alloys was performed to investigate the effect of temperature dependence on B2 and B19 structures at 50 at.%Pt. The NPT ensemble was used to determine the properties of these systems and we found good comparisons with recent experimental work. The temperature dependence of TiPt shows potential martensitic change when B19 is heated to extreme high temperatures of 273K up to 1573K.


Sign in / Sign up

Export Citation Format

Share Document