Current-Voltage Characterization of Gallium Arsenide Nanowires Using a Conductive Atomic Force Microscopy
Utilizing semiconductor nanowires for optoelectronics device requires exact knowledge of their current-voltage properties. In this report, we examine accurate on-top imaging and I-V characterization of individual vertical Gallium Arsenide Nanowires (GaAs NWs) using conductive atomic force microscopy without additional microscopy tools, thus allowing versatile application. The measured current-voltage characteristic of a single NW shows the typical performance of a Schottky contact, which caused by the contact between the metallic AFM tip and the top of NWs. The height of the Schottky barrier is dependent on the diameter of the nanowires. The linear part of the curve was used to calculate the differential resistance, which was found to be about 25 to 100 MΩ. Energy band gap for GaAs NW was found to be 1.5 eV by differential conductivity measurement.