Development of a Copper Heat Pipe with Axial Grooves Manufactured Using Wire Electrical Discharge Machining (Wire-EDM)

2015 ◽  
Vol 1120-1121 ◽  
pp. 1325-1329 ◽  
Author(s):  
Felipe B. Nishida ◽  
Larissa S. Marquardt ◽  
Valquíria Y.S. Borges ◽  
Paulo H.D. Santos ◽  
Thiago Antonini Alves

In this research, a heat pipe with grooves was experimentally analyzed for the application in thermal management of electronic packaging. The heat pipe was produced by a copper tube with an outer diameter of 9.45 mm, length of 205 mm, and capillary structure composed by axial grooves with average diameter of 220 μm. The grooves were manufactured using wire electrical discharge machining (wire-EDM). The working fluid used was de-ionized water. The condenser was cooled by air forced convection and the evaporator was heated using an electrical resistor. This heat pipe was tested horizontally to increasing heat loads varying from 5 to 15 W. The experimental results showed that the heat pipe worked successfully.

2020 ◽  
Vol 42 ◽  
pp. e48189
Author(s):  
Larissa Krambeck ◽  
Guilherme Antonio Bartmeyer ◽  
Davi Fusão ◽  
Paulo Henrique Dias dos Santos ◽  
Thiago Antonini Alves

This paper presents an experimental study on three different capillary structure technologies of heat pipes for application in the thermal management of electronic packaging. The first capillary structure is that of axial grooves manufactured by wire electrical discharge machining (wire-EDM). The sintering process with copper powder produced the second heat pipe. Finally, a hybrid heat pipe was made by the combination of the two previous methods. The heat pipes were produced using copper tubes with an outer diameter of 9.45 mm and a length of 200 mm, and were tested horizontally at increasing heat loads varying from 5 to 35 W. The working fluid used was distilled water. The experimental results showed that all capillary structures for heat pipes worked successfully, so the studied manufacturing methods are suitable. Nonetheless, the hybrid heat pipe is the best, due to the lowest thermal resistance presented.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 701-711
Author(s):  
Nishida Baptista ◽  
Larissa Krambeck ◽  
Dos Dias ◽  
Alves Antonini

This work presents the use of electrical discharge machining (EDM) technology for manufacturing of three different types of axial microgrooves in heat pipes. This specific process, called wire electrical discharge machining (wire-EDM), allows the fabrication of microgrooves on the inner wall of a heat pipe with accuracy. Different from other capillary structures, such as composite wick and screen mesh, the material is removed from the pipe?s container in order to conceive the capillary structure, which contributes with the mass reduction of the passive two-phase heat transfer device. The heat pipes were manufactured from a straight copper pipe with the external diameter of 9.45 mm, the inner diameter of 6.20 mm, and a total length of 200 mm. Three types of axial microgrooves were manufactured for constant width (35 ?m) and varying the depth (from 30-48 ?m), and thickness (from 35-70 ?m). The number of microgrooves was also varied from 21-32 microgrooves. Water was used as the working fluid and the loading filling ratio was 60% of the evaporator volume. The condenser was cooled by air forced convection, the adiabatic section was insulated and the evaporator was heated by an electrical resistor and it was insulated from the environment with aeronautic thermal insulation. The thermal performance of the heat pipes are analyzed based on experimental results, so the heat pipes were tested at the horizontal and different inclinations under different low heat loads (from 5-50 W or a heat flux from 0.21-2.10 W/cm2). The experimental results showed that the axial microgrooves manufactured by the wire-EDM process worked satisfactorily in all analyzed cases and microgrooves of Type 1 showed a better thermal performance when compared with the others.


2018 ◽  
Vol 17 (1) ◽  
pp. 58
Author(s):  
L. Krambeck ◽  
G. A. Bartmeyer ◽  
P. H. D. Santos ◽  
T. Antonini Alves

In this research, a heat pipe with screen-covered groove capillary structure was experimentally analyzed. The heat pipe was manufactured from a copper tube with the external diameter of 9.45mm, inner diameter of      6.20mm, and a total length of 200mm. A Wire Electrical Discharge Machining, or Wire-EDM, was used to manufacture axial microgrooves in the heat pipe. A layer of phosphor bronze mesh #100 completed the capillary structure. Distilled water was the working fluid and the loading filling ratio was 60% of the evaporator volume. The condenser was cooled by air forced convection, the adiabatic section was insulated with fiberglass, and the evaporator was heated by an electrical resistor and it was insulated from the environment with aeronautic insulation. The heat pipe was tested in horizontal position, under different heat loads varying from 5 up to 30W. The experimental results showed that the screen-covered groove worked satisfactorily as a capillary structure.


Author(s):  
Kamlesh Joshi ◽  
Upendra Bhandarkar ◽  
Indradev Samajdar ◽  
Suhas S. Joshi

Slicing of Si wafers through abrasive processes generates various surface defects on wafers such as cracks and surface contaminations. Also, the processes cause a significant material loss during slicing and subsequent polishing. Recently, efforts are being made to slice very thin wafers, and at the same time understand the thermal and microstructural damage caused due to sparking during wire-electrical discharge machining (wire-EDM). Wire-EDM has shown potential for slicing ultra-thin Si wafers of thickness < 200 μm. This work, therefore, presents an extensive experimental work on characterization of the thermal damage due to sparking during wire-EDM on ultra-thin wafers. The experiments were performed using Response surface methodology (RSM)-based central composite design (CCD). The damage was mainly characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The average thickness of thermal damage on the wafers was observed to be ∼16 μm. The damage was highly influenced by exposure time of wafer surface with EDM plasma spark. Also, with an increase in diameter of plasma spark, the surface roughness was found to increase. TEM micrographs have confirmed the formation of amorphous Si along with a region of fine grained Si entrapped inside the amorphous matrix. However, there were no signs of other defects like microcracks, twin boundaries, or fracture on the surfaces. Micro-Raman spectroscopy revealed that in order to slice a wafer with minimum residual stresses and very low presence of amorphous phases, it should be sliced at the lowest value of pulse on-time and at the highest value of open voltage (OV).


2021 ◽  
Author(s):  
Cong Deng ◽  
Zhidong Liu ◽  
Ming Zhang ◽  
Hongwei Pan ◽  
Mingbo Qiu

Abstract Surface machined by high-speed wire electrical discharge machining (HS-WEDM) at super-high thickness (more than 1000 mm) cutting suffers from uneven surface, a major problem that has been investigated in this paper. According to the analysis, as wire frame span increases, the rigidity of the wire electrode decreases, and under the action of discharge explosive force, wire electrode vibration intensifies. As a result, the machining stability inevitably decreases. However, the core problem is whether there is enough working fluid in the slit to dampen and absorb the vibration of the wire electrode so as to ensure the positional stability of the wire electrode. To verify the above point of view: first, the wire guide and gravity take-up with bidirectional tension in the wire feeding system were installed to improve the positional accuracy of the wire electrode; second, to improve the flow of the working fluid into the slit, the slit width was increased by improving the working fluid and a medium carrier with a higher melting point and vaporization point can reduce the vaporization of the working fluid in the slit as much as possible. The experiment showed that the outlet flow of the improved working fluid is 56.72% higher than that of the original working fluid when cutting a 750 mm thick workpiece, which increases the damping and vibration absorption effect of the working fluid on the wire electrode in the long and narrow gap. After the above measures were implemented, super-high thickness cutting can be carried out continuously and steadily, the surface evenness was significantly improved, and the workpiece with a thickness of 2000 mm was cut successfully.


Alloy Digest ◽  
2005 ◽  
Vol 54 (4) ◽  

Abstract Crucible S7 XL is a double-refined high-purity grade of S7 tool steel (see Alloy Digest TS-543, July 1996) designed specifically for ease of wire electrical discharge machining (EDM) operations, improved consistency in texturizing of plastic injection molds, and superior shock resistance compared to conventional S7. Typical applications include plastic injection molds, punches and dies by wire EDM, and heavy impact tools. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on wear resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: TS-562. Producer or source: Crucible Service Centers. Originally published November 1998, revised 2005.


2001 ◽  
Author(s):  
Jun Qu ◽  
Albert J. Shih ◽  
Ron Scattergood

Abstract Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. The design of an underwater rotary spindle is first introduced. The spindle is added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometry. Mathematical models for material removal rate and surface finish in cylindrical wire EDM of the free-form cylindrical workpiece are derived. Experiments are conducted for cylindrical and 2D wire EDM of brass and carbide work-materials. Comparing to the conventional 2D wire EDM of the same work-material, higher maximum material removal rates could be achieved in the cylindrical wire EDM. The surface finish and roundness of parts generated by cylindrical wire EDM at different part rotational speeds and wire traverse speeds are measured and analyzed.


2002 ◽  
Vol 124 (3) ◽  
pp. 702-707 ◽  
Author(s):  
Jun Qu ◽  
Albert J. Shih ◽  
Ronald O. Scattergood

Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. The design of a precise, flexible, and corrosion-resistant underwater rotary spindle is first introduced. A detailed spindle error analysis identifies the major sources of error at different frequency spectrum. The spindle has been added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometries. The mathematical model for material removal rate of the free-form cylindrical wire EDM process is derived. Experiments were conducted to explore the maximum material removal rate for cylindrical and 2D wire EDM of carbide and brass work-materials. Compared to the conventional 2D wire EDM of the same work-material, higher maximum material removal rates may be achieved in the cylindrical wire EDM, possibly due to better debris flushing condition.


2016 ◽  
Vol 106 (06) ◽  
pp. 430-438
Author(s):  
K. Prof. Oßwald ◽  
D. Murnberger ◽  
T. Kappler ◽  
G. Sedlmayr

Diese Untersuchung beschäftigt sich mit einer in den westlichen Industrienationen kaum bekannten Variante des Drahterodierens. Es wird zunächst ein Überblick über die Merkmale der Technologie (beispielsweise Aufbau, verwendeter Draht, Prozessflüssigkeit) gegeben, die sich teilweise deutlich von der konventionellen Technik unterscheiden. Des Weiteren werden die Verläufe von Strom und Spannung des Prozesses gemessen sowie die gefertigten Werkstückoberflächen untersucht. &nbsp; This study deals with a variant of Wire Electrical Discharge Machining that is barely known in western industrialized countries. An overview of this technology‘s characteristics (setup, wire, fluid) is given, some of which are significantly different from conventional wire EDM (Electro Discharge Machining) technology. Furthermore, current and voltage profiles of the HSWEDM (High Speed Wire Electrical Discharge Machining) pulses are analyzed as well as the machined work piece surfaces.


Sign in / Sign up

Export Citation Format

Share Document