Synthesis and Characterization of Al2O3 Nanoparticles and Water-Al2O3 Nanofluids for Nuclear Reactor Coolant

2015 ◽  
Vol 1123 ◽  
pp. 270-273 ◽  
Author(s):  
Dani Gustaman Syarief ◽  
Djoko Hadi Prajitno

A study on synthesis and characterization of Al2O3nanoparticles for water-Al2O3nanofluids as an alternative nuclear coolant has been done. The Al2O3nanoparticles were synthesized from AlCl3using sol gel method utilizing sugar as chelating agent. The Al2O3nanoparticles were mixed with water to produce nanofluids. XRD data showed that the Al2O3nanoparticles crystallize in gamma alumina with crystallite size of 5.5 nm (Debye Scherrer method). Surface area of the Al2O3nanoparticles was 90 m2/gram. Data of TEM showed that the particle size was smaller than 10 nm and the nanoparticle formed agglomerate with size of 60-100 nm. According to zeta potential data, the nanofluids were stable at pH 2.6-7.5 with zeta potential of 28-51 mV. The height of the nanofluid surface decreased about 20 % after 6 days. The thermal conductivity of the water-Al2O3nanofluids produced in this study increased about 2.4-9.7 % compared to that of water.

2014 ◽  
Vol 896 ◽  
pp. 163-167 ◽  
Author(s):  
Dani Gustaman Syarief

Changing water as the conventional nuclear reactor coolant with nanofluid in order to increase the efficiency of heat transfer in the nuclear reactors becomes a strong need. In this work, a study of synthesis and characterization of ZrO2 nanoparticle and water-ZrO2 nanofluid was done. The ZrO2 nanopowder was synthesized using a precipitation method from ZrOCl2.8H2O (ZOC) that was prepared from local zircon (ZrSiO4) using caustic fusion method with calcination temperature of 800°C. The ZrO2 nanoparticle contained two phases namely cubic and monoclinic with crystallite size of 12 nm measured using Debye Scherrer method. Stability of nanofluids that prepared by mixing the ZrO2 nanoparticle with water depended on pH. The nanofluids with pH less than 5 and larger than 8 were stable. Sedimentation test showed that the Water-ZrO2 nanofluid produced in this study was very stable until at least 9 days. A typical basic nanofluid has zeta potential of about-41 mV and a typical acidic one has zeta potential of +45 mV. Thermal conductivity of the nanofluids was 4-9 % larger than that of water.


2009 ◽  
Vol 67 ◽  
pp. 227-232 ◽  
Author(s):  
Gurpreet Singh ◽  
Amrish Panwar ◽  
Anjan Sil ◽  
Sudipto Ghosh

Nanocrystalline LiMn2O4 powder was synthesized by sol-gel method using citric acid as a chelating agent. The powders were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Differential scanning calorimetry (DSC), Differential thermal analysis (DTA), Impedance spectroscopy (IS) and Electrochemical measurements. The powder particles having slight agglomeration characteristics were found to have prismatic morphology and a wider size distribution from 50 nm to 200 nm, which provides good packing density of the material. The electrical conductivity of the powder at room temperature is in the order of ~10-5 S/cm. The structural stability of LiMn2O4 cubic spinel over the temperature range of battery operation was assessed. Electrochemical performance of the material shows a discharge capacity of ~130 mAh/gm.


2002 ◽  
Vol 126 (2) ◽  
pp. 161-165 ◽  
Author(s):  
Junying Zhang ◽  
Zhongtai Zhang ◽  
Zilong Tang ◽  
Zishan Zheng ◽  
Yuanhua Lin

2014 ◽  
Vol 121 ◽  
pp. 20-29 ◽  
Author(s):  
Tim Van Gestel ◽  
Felix Hauler ◽  
Martin Bram ◽  
Wilhelm A. Meulenberg ◽  
Hans Peter Buchkremer

2003 ◽  
Vol 800 ◽  
Author(s):  
Brady J. Clapsaddle ◽  
Lihua Zhao ◽  
Alex E. Gash ◽  
Joe H. Satcher ◽  
Kenneth J. Shea ◽  
...  

ABSTRACTIn the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.


Sign in / Sign up

Export Citation Format

Share Document