machining mechanism
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 14)

H-INDEX

5
(FIVE YEARS 1)

2022 ◽  
Vol 142 ◽  
pp. 106470
Author(s):  
Yue Chen ◽  
Zhongwei Hu ◽  
Yiqing Yu ◽  
Zhiyuan Lai ◽  
Jiegang Zhu ◽  
...  

Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 78
Author(s):  
Baijun Xing ◽  
Yanhua Zou

The magnetic abrasive finishing combined with electrolytic (EMAF) process was proposed to improve the finishing efficiency of the traditional magnetic abrasive finishing (MAF) process. Since the EMAF process contains electrolysis reactions, the machining mechanism of processing different metal is different. In this paper, a series of experiments were conducted to explore the feasibility of using the compound processing tool to finish aluminum alloy A5052, and to preliminary explore the machining mechanism. Surface roughness and material removal are used to evaluate the finishing effect and the finishing efficiency, respectively. The EMAF processing current curve is used to evaluate and analyze the EMAF process. The feasibility of the EMAF processing is proved by the analysis of simulations and the experimental results. Finally, through a series of exploration experiments and parameter optimization experiments, the main conclusions are as follows: (1) Compared with the traditional MAF process, when finishing the surface of aluminum alloy A5052 by the same compound processing tool and at the same experimental conditions (except the electrolysis conditions), the EMAF process, which includes electrolysis reactions, can achieve higher finishing efficiency. (2) In this study, when the working gap is 1 mm and the concentration of NaNO3 solution is 15%, the recommended processing voltage is about 3.4 V.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3135
Author(s):  
Yafei Xu ◽  
Handing Liu ◽  
Liuyang Zhang ◽  
Matthew Becton

The nanocutting has been paid great attention in ultra-precision machining and high sealing mechanical devices due to its nanometer level machining accuracy and surface quality. However, the conventional methods applicable to reproduce the cutting process numerically such as finite element (FE) and molecular dynamics (MD) are challenging to unveil the cutting machining mechanism of the nanocutting due to the limitation of the simulation scale and computational cost. Here a modified quasi-continuous method (QC) is employed to analyze the dynamic nanocutting behavior (below 10 nm) of the copper sample. After preliminary validation of the effectiveness via the wave propagation on the copper ribbon, we have assessed the effects of cutting tool parameters and back-engagement on the cutting force, stress distribution and surface metamorphic layer depth during the nanocutting process of the copper sample. The cutting force and depth of the surface metamorphic layer is susceptible to the back-engagement, and well tolerant to the cutting tool parameters such as the tool rank angle and tool rounded edge diameter. The results obtained by the QC method are comparable to those from the MD method, which indicate the effectiveness and applicability of the modified QC method in the nanocutting process. Overall, our work provides an applicable and efficient strategy to investigate the nanocutting machining mechanism of the large-scale workpiece and shed light on its applications in the super-precision and high surface quality devices.


Sign in / Sign up

Export Citation Format

Share Document