Material removal analysis of hybrid EDM-assisted centrifugal abrasive flow machining process for performance enhancement

Author(s):  
Parvesh Ali ◽  
R. S. Walia ◽  
Qasim Murtaza ◽  
Ranganath Muttanna Singari
Author(s):  
Kai Cheng ◽  
Yizhi Shao ◽  
Mitul Jadva ◽  
Rodrigo Bodenhorst

The paper presents an improved Preston equation, which aims to be part of the industrial application to abrasive flow machining. The equation will aid the engineers to optimise the process for desired surface roughness and edge tolerance characteristics on complex geometries in an intuitive and scientific manner. The methodology presented to derive the equation underpins the fundamental cutting mechanics of abrasive machining or polishing assuming all abrasive particles within the media are spherical as manufacturers defined. Further to derivation, full four factorial experimental trials and computational fluid dynamics simulation are implemented to generate the flow features of media on coupon to evaluate and validate the equation for its competency and accuracy on prediction of material removal. The modified Preston equation can significantly contribute to optimise the abrasive flow machining process, and will advantage the integrated machine design to predict better virtual surface roughness and material removal rates.


2016 ◽  
Vol 1136 ◽  
pp. 131-134 ◽  
Author(s):  
Xuan Ping Wang ◽  
You Zhi Fu ◽  
Hang Gao

Abrasive flow machining is a suitable technique for surface polishing due to its rheological characteristics, however, it's difficult to achieve uniform roughness for polished surfaces as the material removal mechanism is still ambiguous. In this paper the viscoelastic properties of abrasive flow media are incorporated to explore the phenomena of inconsistent material removal in the AFM polishing process, where the material removal near the edges is obviously higher than that in the middle along the flow direction. The rheological parameters of the viscoelastic constitutive model adopted are varied to study the polishing effectiveness under different process conditions. The results of numerical analysis reveal that there exist distinct differences of viscoelastic stress fields between the edges and the middle regions, which leads to the material removal near the edges is higher than that in the middle. It could be concluded that the viscoelastic properties of abrasive media play the dominant role for the inconsistent material removal in abrasive flow machining process.


Author(s):  
Zhiguo Dong ◽  
Gang Ya ◽  
Jiancheng Liu

Abrasive flow machining is a pragmatic machining process used for part finishing. This article primarily focuses on the study of machining mechanism of high viscoelastic abrasive flow machining, with the aim to understand the relation among the abrasive media’s flow pressure, the material removal rate and the machining quality. The theoretical calculation models of the normal pressure on the inner surface of a circular tube and the wall sliding velocity are established based on rheology theory. The material removal rate of abrasive flow machining with a high viscoelastic abrasive media is derived. Numerical simulations with various machining conditions were conducted using the mathematical models proposed in this research and the obtained findings are discussed. The feasibility of these models introduced for high viscoelastic abrasive machining is also investigated and verified through actual experimental tests.


Author(s):  
Parvesh Ali ◽  
Ranganath M. S ◽  
R.S Walia ◽  
Q. Murtaza

Abrasive flow machining is a nonconventional process used for polishing of metallic components, internal inaccessible cavities or recesses using a semi liquid paste. It was developed to deburr, polish the surfaces having complex geometries and edges by flowing abrasive particles with a visco-elastic nonconductive media over them. Abrasive particle sharp cutting edges remove the material by abrasion mechanism from the workpiece surface. In the recent year, work has been carryout towards the development of abrasive flow machining for achieving the higher material removal and improved surface finish. This method has a unique property of simultaneous improvement in material removal and surface finish. In this paper authors discussed about various recent developments in abrasive flow machining with major objective of improving the productivity of the process.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


Sign in / Sign up

Export Citation Format

Share Document