Adaptive Integral-Type Sliding Mode Control for Magnetic Levitation Linear Guide Suspension Altitude

2010 ◽  
Vol 139-141 ◽  
pp. 867-871
Author(s):  
Jing Feng Mao ◽  
Guo Qing Wu ◽  
Ai Hua Wu ◽  
Yang Cao

This paper investigates the constant position suspension altitude control problem for a novel magnetic levitation linear guide. The magnetic levitation linear guide is comprised of a magnetic suspension processing platform and a linear motor direct-drive system. The magnetic suspension system has several characteristics of complicated nonlinearity, parameter perturbation and strong disturbance. In view of these characteristics, an adaptive integral-type sliding mode control (AISMC) technique is used to design magnetic suspension system constant position suspension altitude controller. The AISMC can alleviate chattering and reduce steady error by estimating the boundary of uncertain perturbation. The adaptive tuning algorithm is derived in the sense of the Lyapunov stability theorem, thus the stability of the system can be guaranteed. Simulation results indicate that the proposed AISMC has a better stability, transient and robustness compared with PID control.

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Jen-Hsing Li ◽  
Juing-Shian Chiou

This paper presents the two-dimensional fuzzy sliding mode control of a field-sensed magnetic suspension system. The fuzzy rules include both the sliding manifold and its derivative. The fuzzy sliding mode control has advantages of the sliding mode control and the fuzzy control rules are minimized. Magnetic suspension systems are nonlinear and inherently unstable systems. The two-dimensional fuzzy sliding mode control can stabilize the nonlinear systems globally and attenuate chatter effectively. It is adequate to be applied to magnetic suspension systems. New design circuits of magnetic suspension systems are proposed in this paper. ARM Cortex-M3 microcontroller is utilized as a digital controller. The implemented driver, sensor, and control circuits are simpler, more inexpensive, and effective. This apparatus is satisfactory for engineering education. In the hands-on experiments, the proposed control scheme markedly improves performances of the field-sensed magnetic suspension system.


Sign in / Sign up

Export Citation Format

Share Document