Fabrication Methods and Properties of Open and Closed Cell Foams

2006 ◽  
Vol 15-17 ◽  
pp. 428-432
Author(s):  
I.Ch. Konstantinidis ◽  
D.P. Papadopoulos ◽  
M. Gavaises ◽  
D.N. Tsipas

In this paper we present some simple methods for the fabrication of closed and open cell Al metal foams. The closed cell Al metal foams were fabricated using liquid metallurgy. Their microstructure and morphological characteristics were studied using optical and electron microscopy techniques. The mechanical properties and their relationship to microstructure were established. A three dimensional model was developed relating the cell geometry to the mechanical behavior of Al closed cell foam material. The open cell Al foams were fabricated using sodium chloride powder sinters and liquid Al metal infiltration techniques. The potential of using these cellular structures in various systems is discussed.

2012 ◽  
Vol 78 ◽  
pp. 31-39 ◽  
Author(s):  
Ausonio Tuissi ◽  
Paola Bassani ◽  
Carlo Alberto Biffi

Foams and other highly porous metallic materials with cellular structures are known to have many interesting combinations of physical and mechanical properties. That makes these systems very attractive for both structural and functional applications. Cellular metals can be produced by several methods including liquid infiltration of leachable space holders. In this contribution, results on metal foams of Cu based shape memory alloys (SMAs) processed by molten metal infiltration of SiO2 particles are presented. By using this route, highly homogeneous CuZnAl SMA foams with a spherical open-cell morphologies have been manufactured and tested. Morphological, thermo-mechanical and cycling results are reported.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 855 ◽  
Author(s):  
Reza Omrani ◽  
Bahman Shabani

This paper introduces novel empirical as well as modified models to predict the electrical conductivity of sintered metal fibres and closed-cell foams. These models provide a significant improvement over the existing models and reduce the maximum relative error from as high as just over 30% down to about 10%. Also, it is shown that these models provide a noticeable improvement for closed-cell metal foams. However, the estimation of electrical conductivity of open-cell metal foams was improved marginally over previous models. Sintered porous metals are widely used in electrochemical devices such as water electrolysers, unitised regenerative fuel cells (URFCs) as gas diffusion layers (GDLs), and batteries. Having a more accurate prediction of electrical conductivity based on variation by porosity helps in better modelling of such devices and hence achieving improved designs. The models presented in this paper are fitted to the experimental results in order to highlight the difference between the conductivity of sintered metal fibres and metal foams. It is shown that the critical porosity (maximum achievable porosity) can play an important role in sintered metal fibres to predict the electrical conductivity whereas its effect is not significant in open-cell metal foams. Based on the models, the electrical conductivity reaches zero value at 95% porosity rather than 100% for sintered metal fibres.


Author(s):  
Shijia Zhao ◽  
Linxia Gu ◽  
Shailesh Ganpule

In this work, the stents-induced mechanical responses of a patient-specific common carotid artery (CCA) were evaluated through computational simulation. The realistic 3D geometry of the artery was constructed from the MRI data. Two types of self-expanding stent design (open-cell and closed-cell) were used to restore the blood flow inside the 60% stenosed artery. The resulting lumen gain, dog-boning effect and arterial stress were estimated. Results suggested that the artery was straightened after stent implantation, and the open-cell design led to bigger lumen gain, better conformability, and less dog-boning effect. This work may facilitate the development of new stent designs.


2014 ◽  
Vol 4 ◽  
pp. 293-298 ◽  
Author(s):  
Shuo Chen ◽  
Mohamed Bourham ◽  
Afsaneh Rabiei

2011 ◽  
Vol 312-315 ◽  
pp. 941-946 ◽  
Author(s):  
Seyed Mohammad Hossein Hosseini ◽  
A. Kharaghani ◽  
Christoph Kirsch ◽  
Andreas Öchsner

The thermal properties of irregular open-cell and closed-cell metal foams are investigated via numerical simulation. The influence of relative density and cell irregularity on the thermal conductivity and thermal expansion of the foam structure is determined. It is concluded that the effective thermal conductivity of the foam structure depends linearly on the relative density, whereas no dependence on the degree of irregularity is observed. The effective thermal expansion coefficient of the foam structure is constant for the range of parameters considered.


2006 ◽  
Vol 128 (4) ◽  
pp. 951-959 ◽  
Author(s):  
Albert J. Shih ◽  
Zhenhua Huang

The optical, noncontact stereovision system and data analysis procedure are developed for the measurement of porous foams. The stereovision measurement system has demonstrated the capability to capture both the micro-scale features and the macro-scale shape of both the open-cell and closed-cell porous foams. A computational procedure, denoted as the grid method, is developed to identify representative planes on the porous foam surface using the stereovision measured data points. The relative positions between planes can be used to calculate the angles and distances between porous foam surfaces. A SiC open-cell and an aluminum closed-cell foams are used as examples to validate the grid method and demonstrate its computational efficiency. This research enables the form measurements and geometrical dimensioning and tolerancing of porous foams for quality control and assembly and contact analysis.


2019 ◽  
Vol 1224 ◽  
pp. 012009
Author(s):  
M Iasiello ◽  
C Savarese ◽  
P J Damian ◽  
N Bianco ◽  
A Andreozzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document