Three-Dimensional Optical Measurements of Porous Foams

2006 ◽  
Vol 128 (4) ◽  
pp. 951-959 ◽  
Author(s):  
Albert J. Shih ◽  
Zhenhua Huang

The optical, noncontact stereovision system and data analysis procedure are developed for the measurement of porous foams. The stereovision measurement system has demonstrated the capability to capture both the micro-scale features and the macro-scale shape of both the open-cell and closed-cell porous foams. A computational procedure, denoted as the grid method, is developed to identify representative planes on the porous foam surface using the stereovision measured data points. The relative positions between planes can be used to calculate the angles and distances between porous foam surfaces. A SiC open-cell and an aluminum closed-cell foams are used as examples to validate the grid method and demonstrate its computational efficiency. This research enables the form measurements and geometrical dimensioning and tolerancing of porous foams for quality control and assembly and contact analysis.

Author(s):  
Shijia Zhao ◽  
Linxia Gu ◽  
Shailesh Ganpule

In this work, the stents-induced mechanical responses of a patient-specific common carotid artery (CCA) were evaluated through computational simulation. The realistic 3D geometry of the artery was constructed from the MRI data. Two types of self-expanding stent design (open-cell and closed-cell) were used to restore the blood flow inside the 60% stenosed artery. The resulting lumen gain, dog-boning effect and arterial stress were estimated. Results suggested that the artery was straightened after stent implantation, and the open-cell design led to bigger lumen gain, better conformability, and less dog-boning effect. This work may facilitate the development of new stent designs.


2006 ◽  
Vol 15-17 ◽  
pp. 428-432
Author(s):  
I.Ch. Konstantinidis ◽  
D.P. Papadopoulos ◽  
M. Gavaises ◽  
D.N. Tsipas

In this paper we present some simple methods for the fabrication of closed and open cell Al metal foams. The closed cell Al metal foams were fabricated using liquid metallurgy. Their microstructure and morphological characteristics were studied using optical and electron microscopy techniques. The mechanical properties and their relationship to microstructure were established. A three dimensional model was developed relating the cell geometry to the mechanical behavior of Al closed cell foam material. The open cell Al foams were fabricated using sodium chloride powder sinters and liquid Al metal infiltration techniques. The potential of using these cellular structures in various systems is discussed.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050051
Author(s):  
Khawla Essassi ◽  
Jean-Luc Rebiere ◽  
Abderrahim El Mahi ◽  
Mohamed Amine Ben Souf ◽  
Anas Bouguecha ◽  
...  

In this research contribution, the static behavior and failure mechanisms are developed for a three-dimensional (3D) printed dogbone, auxetic structure and sandwich composite using acoustic emissions (AEs). The skins, core and whole sandwich are manufactured using the same bio-based material which is polylactic acid reinforced with micro-flax fibers. Tensile tests are conducted on the skins and the core while bending tests are conducted on the sandwich composite. Those tests are carried out on four different auxetic densities in order to investigate their effect on the mechanical and damage properties of the materials. To monitor the invisible damage and damage propagation, a highly sensitive AE testing method is used. It is found that the sandwich with high core density displays advanced mechanical properties in terms of bending stiffness, shear stiffness, facing bending stress and core shear stress. In addition, the AE data points during testing present an amplitude range of 40–85[Formula: see text]dB that characterizes visible and invisible damage up to failure.


2021 ◽  
pp. 197140092110269
Author(s):  
Tomoko Hayashi ◽  
Hiroyuki Ikeda ◽  
Ryota Ishibashi ◽  
Toshio Fujiwara ◽  
Ryosuke Kaneko ◽  
...  

Low-profile visualized intraluminal support deployment in an Enterprise has been reported; however, that in an Atlas has yet to be in detail. Enterprise has a closed-cell design, while Atlas has an open-cell design. We detail here a case of a large wide-necked aneurysm treated by coil embolization with low-profile visualized intraluminal support Blue deployment within a Neuroform Atlas and a bench-top experiment using a silicon tube to test low-profile visualized intraluminal support, Atlas, Enterprise, and their combinations. A better low-profile visualized intraluminal support expansion was achieved by simultaneously pushing the wire and the system within the Atlas placed at the aneurysm neck, which resulted in an increased metal coverage of the aneurysm neck and a shorter transition zone with low metal coverage at both ends of the aneurysm neck. This technique may enable a high metal coverage by low-profile visualized intraluminal support expansion without restriction by the Atlas and contribute to aneurysm occlusion by increasing the flow-diverting effect.


Author(s):  
Deepika Saini ◽  
Sanoj Kumar ◽  
Manoj K. Singh ◽  
Musrrat Ali

AbstractThe key job here in the presented work is to investigate the performance of Generalized Ant Colony Optimizer (GACO) model in order to evolve the shape of three dimensional free-form Non Uniform Rational B-Spline (NURBS) curve using stereo (two) views. GACO model is a blend of two well known meta-heuristic optimization algorithms known as Simple Ant Colony and Global Ant Colony Optimization algorithms. Basically, the work talks about the solution of NURBS-fitting based reconstruction process. Therefore, GACO model is used to optimize the NURBS parameters (control points and weights) by minimizing the weighted least-square errors between the data points and the fitted NURBS curve. The algorithm is applied by first assuming some pre-fixed values of NURBS parameters. The experiments clearly show that the optimization procedure is a better option in a case where good initial locations of parameters are selected. A detailed experimental analysis is given in support of our algorithm. The implemented error analysis shows that the proposed methodology perform better as compared to the conventional methods.


Author(s):  
Zhenping Liu ◽  
James C. Hill ◽  
Rodney O. Fox ◽  
Michael G. Olsen

Flash Nanoprecipitation (FNP) is a technique to produce monodisperse functional nanoparticles through rapidly mixing a saturated solution and a non-solvent. Multi-inlet vortex reactors (MIVR) have been effectively applied to FNP due to their ability to provide both rapid mixing and the flexibility of inlet flow conditions. Until recently, only micro-scale MIVRs have been demonstrated to be effective in FNP. A scaled-up MIVR could potentially generate large quantities of functional nanoparticles, giving FNP wider applicability in the industry. In the present research, turbulent mixing inside a scaled-up, macro-scale MIVR was measured by stereoscopic particle image velocimetry (SPIV). Reynolds number of this reactor is defined based on the bulk inlet velocity, ranging from 3290 to 8225. It is the first time that the three-dimensional velocity field of a MIVR was experimentally measured. The influence of Reynolds number on mean velocity becomes more linear as Reynolds number increases. An analytical vortex model was proposed to well describe the mean velocity profile. The turbulent characteristics such as turbulent kinematic energy and Reynolds stress are also presented. The wandering motion of vortex center was found to have a significant contribution to the turbulent kinetic energy of flow near the center area.


2015 ◽  
Author(s):  
Ahmed Swidan ◽  
Giles Thomas ◽  
Dev Ranmuthugala ◽  
Irene Penesis ◽  
Walid Amin ◽  
...  

Wetdeck slamming is one of the principal hydrodynamic loads acting on catamarans. CFD techniques are shown to successfully characterise wetdeck slamming loads, as validated through a series of controlled-speed drop tests on a three-dimensional catamaran hullform model. Simulation of water entry at constant speed by applying a fixed grid method was found to be more computationally efficient than applying an overset grid. However, the overset grid method for implementing the exact transient velocity profile resulted in better prediction of slam force magnitude. In addition the splitting force concurrent with wetdeck slam event was quantified to be 21% of the vertical slamming force.


2018 ◽  
Vol 225 ◽  
pp. 06010
Author(s):  
N. Amir ◽  
Mohamed Syakir Mohamed Hisham ◽  
Kamal Ariff Zainal Abidin

Lack of information about the formulation and fabrication process of starch polymer foam and lack of study in the shock absorption ability of starch polymer foam were the reasons this research was executed. In this project starch polymer foam was produced to be used as cushioning material for packaging. Starch polymer foam were developed from starch, polyvinyl alcohol (PVA), urea, citric acid, and deionised water. Water amount with drying and curing process were the variables manipulated to produce the best starch polymer foam. It was determined then, that the optimized ratio of starch:PVA:citric acid was 1:1:4. The amount of water used was 10 ml/gram of starch/PVA weight. The suitable foaming mixing was done at a speed of 1500 rpm for 40 minutes. Drying process was done at 70°C for 24 hours, followed by curing process at 100°C for 1 hour to produce closed-cell foam. While for the open-cell foam, the foam was dried and cured at 100ºC for 6 hours. The open-cell and closed-cell foams produced were cut to 6 cm height x 6 cm width x 0.5 cm thick. The average density was calculated and then the foams were subjected to weight drop destructive test. The test was done by placing a foam on top of a piece of mirror, and a weight is dropped onto the foam, with increasing height until the mirror break. Three weights were used with mass of 50 g, 100 g and 200 g. The starch foams were compared to polyurethane and polystyrene foams in terms of the minimum height that can cause the mirror to break. The results showed that starch closed-cell foam absorbed the highest impact energy followed by polystyrene foam, starch open-cell foam and polyurethane foam.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
Gregory de Boer ◽  
Andreas Almqvist

A two-scale method for modelling the Elastohydrodynamic Lubrication (EHL) of tilted-pad bearings is derived and a range of solutions are presented. The method is developed from previous publications and is based on the Heterogeneous Multiscale Methods (HMM). It facilitates, by means of homogenization, incorporating the effects of surface topography in the analysis of tilted-pad bearings. New to this article is the investigation of three-dimensional bearings, including the effects of both ideal and real surface topographies, micro-cavitation, and the metamodeling procedure used in coupling the problem scales. Solutions for smooth bearing surfaces, and under pure hydrodynamic operating conditions, obtained with the present two-scale EHL model, demonstrate equivalence to those obtained from well-established homogenization methods. Solutions obtained for elastohydrodynamic operating conditions, show a dependency of the solution to the pad thickness and load capacity of the bearing. More precisely, the response for the real surface topography was found to be stiffer in comparison to the ideal. Micro-scale results demonstrate periodicity of the flow and surface topography and this is consistent with the requirements of the HMM. The means of selecting micro-scale simulations based on intermediate macro-scale solutions, in the metamodeling approach, was developed for larger dimensionality and subsequent calibration. An analysis of the present metamodeling approach indicates improved performance in comparison to previous studies.


2010 ◽  
Vol 29-32 ◽  
pp. 835-840 ◽  
Author(s):  
Zhi Peng Feng ◽  
Ji Ye Zhang ◽  
Wei Hua Zhang

As the speed of train increases, flow-induced vibration of trains passing through tunnels has become a subject of discussion, to investigate this phenomenon, a simplified geometric model and a vehicle dynamics model of a high-speed train traveling through a tunnel were built. To analyze the unsteady three-dimensional flow around the train, the 3-D, transient, viscous, compressible Reynolds-averaged Navier-Stokes equations combined with the k- two-equation turbulence model were solved with the finite volume method. The motion of the train was carried out using the technique of sliding grid method. The dynamics response of the train was obtained by means of the computational multi-body dynamics calculation. Meanwhile the running safety and riding comfort of the train were analyzed. With the numerical simulation, the variation of aerodynamic forces was obtained. The research founds that, vibration of the train increases drastically during it passing through a tunnel. The running safety and riding quality of the train are reduced greatly but they are in the safe range.


Sign in / Sign up

Export Citation Format

Share Document