Mechanical Properties of Steam-Cured Concrete with Combined Mineral Admixtures

2010 ◽  
Vol 168-170 ◽  
pp. 1535-1538
Author(s):  
Zhi Min He ◽  
Jun Zhe Liu ◽  
Tian Hong Wang

In precast concrete elements manufacturing, steam-cured concrete incorprating 30% mineral admixtures encountered the problem of too low demoulding compressive strength. To resolve it, this paper mainly studied the influence of mineral admixtures on the compressive strength, the tensile-splitting strength and the flexural strength of the steam-cured concrete. The experimental results indicated that, compared with steam-cured concrete incorprating mineral admixtures, the later strength of steam-cured concrete incorprating 0% mineral admixtures has lower increment degree and its increment of tensile-splitting strength and flexural strength inverted to some extent. The demoulding compressive strength is too low for the high volume fly ash concrete mixtures. The problem of too low demoulding compressive strength is solved by incorprating composites of ground blast furnace slag(GBFS) and fly ash. Different varieties of mineral admixture used in the concretes can produce a certain degree of potentiation.

2018 ◽  
Vol 20 (2) ◽  
pp. 51
Author(s):  
Antoni . ◽  
Hendra Surya Wibawa ◽  
Djwantoro Hardjito

This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.


2011 ◽  
Vol 295-297 ◽  
pp. 165-169
Author(s):  
Guan Guo Liu ◽  
Jing Ming ◽  
Xiong Wen Zhang ◽  
Ai Bin Ma

Sulfate attack is one of several chemical and physical mechanisms of concrete deterioration. In actual situation, concrete structures always suffer from the coupled effects of multifactor such as wet-dry cycle and sulfate attack when exposed to tidal area or groundwater level change environment. Partial replacement of cement with mineral admixture is one of the efficient methods for improving concrete resistance against sulfate attack. In this regard, the resistance of concrete with fly ash and slag to sulfate attack was investigated by wet-dry cycle method. The degree of sulfate attack on specimens after different cycles was observed using scanning electron microscopy. The results of compressive strength and percentage of compressive strength evolution factor at various cycling times show an increase in the sulfate resistance of concrete with 60% of fly ash and slag than that only with 40% fly ash. The microstructural study indicates that the primary cause of deterioration of concrete under wet-dry cycle condition is swelling of the sulfate crystal rather chemical attack.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3344 ◽  
Author(s):  
Zhiyuan Zhou ◽  
Massoud Sofi ◽  
Elisa Lumantarna ◽  
Rackel San Nicolas ◽  
Gideon Hadi Kusuma ◽  
...  

To address sustainability issues by facilitating the use of high-volume fly ash (HVFA) concrete in industry, this paper investigates the early age hydration properties of HVFA binders in concrete and the correlation between hydration properties and compressive strengths of the cement pastes. A new method of calculating the chemically bound water of HVFA binders was used and validated. Fly ash (FA) types used in this study were sourced from Indonesia and Australia for comparison. The water to binder (w/b) ratio was 0.4 and FA replacement levels were 40%, 50% and 60% by weight. Isothermal calorimetry tests were conducted to study the heat of hydration which was further converted to the adiabatic temperature rise. Thermo-gravimetric analysis (TGA) was employed to explore the chemically bound water (WB) of the binders. The results showed that Australian FA pastes had higher heat of hydration, adiabatic temperature rise, WB and compressive strength compared to Indonesian FA pastes. The new method of calculating chemically bound water can be successfully applied to HVFA binders. Linear correlation could be found between the WB and compressive strength.


2013 ◽  
Vol 652-654 ◽  
pp. 1181-1184
Author(s):  
Guo Qiang Xu ◽  
Zhi Guo You ◽  
Lin Gao ◽  
Dian Li Han

The influence of admixture of super-fine limestone powder and low-quality fly ash in different proportions on the fluidity and strength of cement mortar is studied. The test results show that the mortar fluidity increases with the increase of the super-fine limestone powder (the mixing amount of fly ash reduces), and the strength of cement mortar can improve when limestone powder and low-quality fly ash are combined admixed to a certain ratio. The maximum flexural strength of the 28d mortar is 9.8MPa and its maximum compressive strength is 42.2MPa, and at this time, the limestone powder accounts for 33.3% of the mineral admixtures. However, when the mixing amount of super-fine limestone powder is over a certain range, the strength of 28d cement mortar will reduce.


2014 ◽  
Vol 660 ◽  
pp. 312-316
Author(s):  
Mochamad Solikin ◽  
Budi Setiawan

This paper reports an investigation on mechanical properties of high volume fly ash (HVFA) concrete produced using different types of mixing water i.e. tap water and saturated lime water. The mechanical properties of ordinary Portland cement concrete are also investigated as control tests. The concrete were tested for their compressive strength, flexural strength and splitting tensile strength at the curing ages of 56 days. The results showed that strength development of high volume fly ash concrete up to 56 days is lower than ordinary portal cement. In addition, the flexural strength and splitting strength of concrete are lower than ordinary Portland cement. Moreover, the use of saturated lime water as mixing water reduces the mechanical properties of class C high volume fly ash concrete.


Sign in / Sign up

Export Citation Format

Share Document