scholarly journals Influence of Particle Size Distribution of High Calcium Fly Ash on HVFA Mortar Properties

2018 ◽  
Vol 20 (2) ◽  
pp. 51
Author(s):  
Antoni . ◽  
Hendra Surya Wibawa ◽  
Djwantoro Hardjito

This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.

2016 ◽  
Vol 857 ◽  
pp. 416-420 ◽  
Author(s):  
Antoni ◽  
Stephen Wibiatma Wijaya ◽  
Juan Satria ◽  
Agung Sugiarto ◽  
Djwantoro Hardjito

Geopolymer that was made with high CaO content fly ash was found to have higher compressive strength than the low CaO fly ash, using the same mixture composition. This effect could be due to the physico-chemical properties of the fly ash, in respect to its particle size or the chemical composition. Although it was not widely published, the occurrence of flash setting of geopolymer was known to occur when using high CaO content fly ash as the precursor. Geopolymer paste may solidify within minutes after the addition of alkali activators, making it very difficult to cast in big volume. This paper investigate the effect of borax addition to the high calcium fly ash-based geopolymer mixture to reduce the occurrence of flash setting. It was found that the setting time can be extended significantly, with the addition of 5% borax, by mass, of fly ash. The addition of borax also have positive effect on increasing the compressive strength of geopolymer.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
El-Sayed Negim ◽  
Latipa Kozhamzharova ◽  
Yeligbayeva Gulzhakhan ◽  
Jamal Khatib ◽  
Lyazzat Bekbayeva ◽  
...  

This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.


2011 ◽  
Vol 493-494 ◽  
pp. 355-360
Author(s):  
F. Dombrowski ◽  
R. Hoffmann ◽  
Ute Ploska ◽  
Heidi Marx ◽  
Georg Berger

The paper presented here deals with rheological and hardening properties during the setting reaction, and density and compressive strength after the final setting of a figuline composite consisting of Ca2KNa(PO4)2and 2wt% medium gel strength gelatin. Compared to the composite with monomodal particle size distribution (d50=7.18µm; span=3.9) and its properties during and after setting reaction, the goal of this work is to increase the resulting product compressive strength by mixing different particle sizes in order to obtain bi- and trimodal distributions. For the bimodal powder mixtures the ratio in diameter (dcourse/dsmall) was chosen with 7/1 and volume ratio dcourse/dsmallwas 70/30%. For the trimodal powder mixtures the ratio in diameter (dcourse/dmedium/dsmall) was chosen with 70/7/1 and volume ratio dcourse/dmedium/dsmallwas set to 44/28/28%.After establishing an adequate crushing and sieving process the tap density and powder density of each fraction was determined. Subsequently, the different particle sizes were mixed and the densities and the Hausner ratio were determined again. The mixtures show an increase in both densities especially the tap density increased significantly. Rheological investigations show that the graphs of storage and loss moduli of the multimodal powder mixtures respectively are similar. The characteristic setting times show a slight decrease compared with the monomodal composite but not significantly different data. When comparing the resulting compressive strength of cylindrical samples, which were stored direct after reaching the initial setting time under physiological conditions, the studies illustrated in all cases for the multimodal mixtures a significant increase in compressive strength and a higher density.


2012 ◽  
Vol 557-559 ◽  
pp. 1415-1419
Author(s):  
Bao Ying Yu ◽  
Fen Lian Xu ◽  
Yu Xin Gao

By testing flexural and compressive strength at different ages, the influence of particle size distribution of slag and fly ash on the strength of LCC (low clinker cement) were systematically studied. The SEM (scanning electron microscope) and laser particle size analyzer were used to study the multi-component cementitious and dense-packing effects of LCC. The results show that the strength development of LCC4 with 30% clinker could completely meet the requirements of P.O 42.5R by varying the type, content or fineness of admixtures; based on a higher fly ash and lower clinker dosage, the strength development of LCC9 is also relatively good.


Author(s):  
Wichian Chalee ◽  
Reaksmey Soeurt ◽  
Pumipat Pachana ◽  
Smith Songpiriyakij

AbstractThis research aimed to present the improvement of the cementitious material in high-volume fly ash using only one alkali activator. Fly ash was used as a partial replacement for Portland cement type I, varying from 0 to 60% by weight of the binder. Concentrations of NaOH varying from 0.00 to 1.25 molar were used as alkali activator. Paste properties and mortar compressive strength at the ages of 3, 7, 14, 28, 60, and 90 days of water curing were investigated. The results reveal that fly ash paste with an alkali activator provides shorter initial setting time when compared to control paste without alkali activator. The use of 0.50 molar NaOH concentration in mortar containing fly ash not exceeding 50% by weight of binder provides the highest compressive strength at any age of curing. At that concentration, there is a significant increase in the 28-day compressive strength of up to 45% over that of the control mortar. In addition, higher NaOH concentration (not exceeding 1.00 molar) has a significant positive effect on the compressive strength of mortar with higher fly ash content, especially over longer curing periods.


2018 ◽  
Vol 881 ◽  
pp. 158-164 ◽  
Author(s):  
Remigildus Cornelis ◽  
Henricus Priyosulistyo ◽  
Iman Satyarno ◽  
Rochmadi

Fly ash based geopolymer normally gets the optimum strength by heat curing. This is considered as a hindrance to in-situ applications. Therefore, development of fly ash based geopolymer that suitable for ambient curing will widen the application to the concrete structure. This paper reports the results of an experimental study on setting time and development of compressive strength of class C fly ash based geopolymer paste produced in ambient curing condition. The main synthesis parameters such as water to the geopolymer solid ratio, alkali to cementitious ratio and molarity of NaOH were varied to understand their individual effect on setting time and the mechanical properties of the resulting geopolymer. The results suggested that generally the setting time increased with the NaOH molarity and the compressive strength of 59 MPa was obtained for geopolymer mixture cured at ambient temperature for 28 days with alkali to a cementitious ratio of 0.35 and 10 M NaOH. The results will be useful for developing the knowledge of the use of high calcium fly ash in producing geopolymer. This would be beneficial to the understanding the future applications of this material as new binding material.


Sign in / Sign up

Export Citation Format

Share Document