Effect of Tillage Systems on Soil Organic Carbon and Soil Quality in a Purple Paddy Soil

2011 ◽  
Vol 183-185 ◽  
pp. 1190-1194
Author(s):  
Jun Ke Zhang ◽  
Qing Ju Hao ◽  
Chang Sheng Jiang ◽  
Yan Wu

The impact of conservation tillage practices on carbon sequestration has been of great interest in recent years. This experiment analyzed the organic carbon status of soils sampled at depth increments from 0 to 60 cm after 20 years in a purple paddy soil. The tillage experiment was established in the Key Field Station for Monitoring of Eco-Environment of Purple Soil of the Ministry of Agriculture of China, located in the farm of Southwest University (30°26′N, 106°26′E), Chongqing. In this paper, five tillage treatments including conventional tillage with rice only system (DP), conventional tillage with rotation of rice and rape system (SL), no-till and ridge culture with rotation of rice and rape system (LM), no-till and plain culture with rotation of rice and rape system (XM) and tillage and ridge culture with rotation of rice and rape system (LF) were selected as research objectives to measure SOC storage and stratification ratio of SOC (CSR). The SOC storage under different tillage systems was calculated based on an equivalent soil mass. The CSR can be used as an indicator of soil quality because surface organic matter is essential to erosion control, water infiltration, and the conservation of nutrients. Results showed that in soil under no-till SOC was concentrated near the surface, while in tilled soil SOC decreased equably with the increase of soil depth. The difference of SOC contents between the five tillage systems was the largest in the top soil and the lowest in the bottom soil. The order of SOC storage was LM (158.52 Mg C•ha-1) >DP (106.74 Mg C•ha-1) >XM (100.11 Mg C•ha-1) >LF (93.11 Mg C•ha-1) >SL (88.59 Mg C•ha-1), LM treatment was significantly higher than the other treatments. The CSR of 0-10/50-60 cm was 2.65, 2.70 and 2.14 under LM, XM and LF treatments, while 1.54 and 1.92 under DP and SL treatments. We considered CSR>2 indicate an improvement in soil quality produced by changing from tillage to no-tillage, as well as changing from plane to ridge. Overall, long-term LM treatment is a valid strategy for increasing SOC storage and improving soil quality in a purple paddy soil in Southwest China.

2011 ◽  
Vol 71-78 ◽  
pp. 2759-2762
Author(s):  
Juan Peng ◽  
En Ci ◽  
Zhuo Wang Fu ◽  
Ming Gao ◽  
De Ti Xie

Effects of different tillage systems on organic carbon and carbon management index (CMI) in paddy soil of long-term experiment site (since 1990) were studied. The experiment included three tillage treatments: conventional tillage with rotation of rice and winter fallow (CT-r) system, no-tillage and ridge culture with rotation of rice and rape (RT-rr) system, and conventional tillage with rotation of rice and rape (CT-rr) system. Soil labile organic carbon measured by oxidation of KMnO4 respond rapidly to carbon supply changes, and it is considered as an important indicator of soil quality. Compared with CT-r system, long-term RT-rr system significantly increased total organic carbon and labile organic carbon in surface soil (0-10 cm and10-20 cm). The proportion of labile organic carbon to total organic carbon under RT-rr system was higher than other tillage systems. The carbon management index (CMI) is derived from the total soil organic carbon pool and carbon lability and is useful to evaluate the capacity of management systems to promote soil quality. The CMI increased in each layer under RT-rr system, while it decreased under CT-rr system. This indicated that conservation tillage improved the capacity of the management system into promoting soil quality in Sichuan Basin of China.


2021 ◽  
Author(s):  
Luiz Alberto da Silva Rodrigues Pinto ◽  
Sandra Santana de Lima ◽  
Cristiane Figueira da Silva ◽  
Rafael Gomes da Mota Gonçalves ◽  
Igor de Sousa Morais ◽  
...  

Abstract Conventional and conservation tillage systems can alter soil aggregation and total and labile soil organic matter (SOM) contents. This study aimed to determine the degree of soil aggregation, quantify total carbon (TC), permanganate oxidizable carbon (POXC), light organic matter (LOM), and potentially mineralizable carbon (CO2-C) contents in soils aggregates, and assess soil quality indices at sites under conventional and conservation tillage in the Cerrado region of Minas Gerais State, Brazil. Four experimental areas were analyzed: a area under conventional tillage for 20 years, a area under no-till for 6 years, a area under no-till for 18 years, and a reference area of undisturbed Cerrado vegetation. Soil aggregates retained on 8.0 to 4.0 mm sieves were evaluated for size class distribution and mean weight diameter. TC, POXC, LOM, daily and total CO2-C emissions were also analyzed. These data were used to calculate the C/N ratio and sensitivity, carbon pool, and lability indices. The results of SOM compartments were in agreement with those obtained for the soil aggregation status. Environmental conditions at no-till areas promoted macroaggregate formation and preserved TC and LOM contents, resulting in a high degree of aggregate stability. Soil quality indices were sensitive to identify changes between the reference area and managed areas. Soil aggregates from no-till areas had higher CO2-C emissions and accumulations than those from the conventional tillage area.


2011 ◽  
Vol 183-185 ◽  
pp. 1185-1189
Author(s):  
Qi Wen Tang ◽  
Chang Sheng Jiang ◽  
Qing Ju Hao ◽  
Yan Wu

The effect of different tillage systems on the size distribution of aggregates and organic carbon distribution and storage in different size aggregates in a Hydragric Anthrosol were studied in a long-term experiment in Chongqing, China. The experiment included five tillage treatments, which are conventional tillage with rice only system (DP), conventional tillage with rotation of rice and rape system (SH), no-till and ridge culture with rotation of rice and rape system (LM), no-till and plain culture with rotation of rice and rape system (XM) and tillage and ridge culture with rotation of rice and rape system (LF), respectively. The results showed that the aggregates 0.25-0.05 mm in diameter accounted for the largest proportion in each soil layer under all treatments. The organic carbon mainly exist in aggregates in the 0.25-2 mm and 0.05-0.25 mm diameter in the plough layer, which mainly exist in the 0.25-2 mm in diameter in the bottom layer. Distribution of organic carbon in aggregates in the 0.05-0.25 mm diameter class was highest, followed by the aggregates in the 0.25-2mm diameter class. The organic carbon in aggregates under different tillage systems was in a decreasing order of LM (21.05 g·kg-1)> DP (14.13 g·kg-1)> XM (13.29 g·kg-1)> LF (12.54 g·kg-1) > SH (11.41 g·kg-1). The total organic carbon content showed a significant correlation with the amount of aggregates with diameter >0.005 mm. The results showed that the accumulation of soil organic carbon was mainly affected by aggregates in the >0.005mm diameter class.


Soil Research ◽  
2013 ◽  
Vol 51 (2) ◽  
pp. 133 ◽  
Author(s):  
C. C. Figueiredo ◽  
D. V. S. Resck ◽  
M. A. C. Carneiro ◽  
M. L. G. Ramos ◽  
J. C. M. Sá

Enhancement of organic matter plays an essential role in improving soil quality for supporting sustainable food production. Changes in carbon stocks with impacts on emissions of greenhouse gases may result from the stratification of organic matter as a result of soil use. The objective of this study was to evaluate the impact of soil management systems on soil carbon stocks and stratification ratios (SR) of soil organic matter pools. Total organic carbon (TOC), particulate organic carbon (POC), mineral-associated organic carbon, microbial biomass carbon (MBC) and nitrogen, basal respiration, and particulate organic matter nitrogen (PON) were determined. The field experiment comprised several tillage treatments: conventional tillage, no-till with biannual rotation, no-till with biannual rotation combined with a second crop, no-till with annual rotation, and pasture. The labile fractions indicated a high level of variation among management systems. Pasture proved to be an excellent option for the improvement of soil carbon. While the conventional tillage system reduced total carbon stocks of the soil (0–40 cm), no-tillage presented TOC stocks similar to that of native vegetation. Sensitivity of the TOC SR varied from 0.93 to 1.28, a range of 0.35; the range for POC was 1.76 and for MBC 1.64. The results support the hypothesis that the labile fractions (POC, MBC, and PON) are highly sensitive to the dynamics of organic matter in highly weathered soils of tropical regions influenced by different management systems. Reductions to SRs of labile organic matter pools are related to the impacts of agricultural use of Cerrado soils.


2011 ◽  
Vol 183-185 ◽  
pp. 2163-2167
Author(s):  
Yan Wu ◽  
Qing Ju Hao ◽  
Chang Sheng Jiang

The effect of different tillage systems on the soil organic carbon (SOC), active organic carbon (AOC) and remaining organic carbon (ROC) were studied in a long-term experiment in Chongqing, China. The experiment included five tillage treatments, which are conventional tillage with rice only system (DP), conventional tillage with rotation of rice and rape system (SH), no-till and ridge culture with rotation of rice and rape system (LM), no-till and plain culture with rotation of rice and rape system (XM) and tillage and ridge culture with rotation of rice and rape system (LF), respectively. The results showed that the content of SOC declined as the soil depth increased, and presented obvious surface enrichment phenomenon under the no-tillage systems. The order of SOC, AOC, ROC and ROC/SOC in the 0–60 cm soil layer under different tillage systems was LM (22.74 g kg-1) > DP (14.57 g kg-1) > XM (13.73 g kg-1) > LF (13.10 g kg-1) > SH (11.92 g kg-1), DP (3.67 g kg-1) > LF (3.49 g kg-1) > LM (3.28 g kg-1) > XM (3.17 g kg-1) > SH (2.69 g kg-1), LM (18.09 g kg-1) > DP (10.34 g kg-1) > XM (10.12 g kg-1) > LF (9.20 g kg-1) > SH (8.80 g kg-1) and LM (85%) > SH (78%) > XM 77%) > LF (75%) > DP (74%). Compared with other systems, LM significantly increased SOC, ROC and ROC/SOC, which indicated long-term LM system performed good effect for carbon sequestration.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4836 ◽  
Author(s):  
Marie-Pierre Hiel ◽  
Sophie Barbieux ◽  
Jérôme Pierreux ◽  
Claire Olivier ◽  
Guillaume Lobet ◽  
...  

Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions. This study specifically focusses on temperate climate and loamy soil using a seven-year data set. Between 2008 and 2016, we compared four contrasting residue management strategies differing in the amount of crop residues returned to the soil (incorporation vs. exportation of residues) and in the type of tillage (reduced tillage (10 cm depth) vs. conventional tillage (ploughing at 25 cm depth)) in a field experiment. We assessed the impact of the crop residue management on crop production (three crops—winter wheat, faba bean and maize—cultivated over six cropping seasons), soil organic carbon content, nitrate (${\mathrm{NO}}_{3}^{-}$), phosphorus (P) and potassium (K) soil content and uptake by the crops. The main differences came primarily from the tillage practice and less from the restitution or removal of residues. All years and crops combined, conventional tillage resulted in a yield advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower germination rate observed under reduced tillage, especially during drier years. On average, only small differences were observed for total organic carbon (TOC) content of the soil, but reduced tillage resulted in a very clear stratification of TOC and also of P and K content as compared to conventional tillage. We observed no effect of residue management on the ${\mathrm{NO}}_{3}^{-}$ content, since the effect of fertilization dominated the effect of residue management. To confirm the results and enhance early tendencies, we believe that the experiment should be followed up in the future to observe whether more consistent changes in the whole agro-ecosystem functioning are present on the long term when managing residues with contrasted strategies.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 208
Author(s):  
Małgorzata Szostek ◽  
Ewa Szpunar-Krok ◽  
Renata Pawlak ◽  
Jadwiga Stanek-Tarkowska ◽  
Anna Ilek

The aim of the study was to compare the effect of conventional, simplified, and organic farming systems on changes in the content of soil organic carbon, organic matter fractions, total nitrogen, and the enzymatic activity. The research was conducted from 2016–2018 on arable land in the south-eastern part of Poland. The selected soils were cultivated in conventional tillage (C_Ts), simplified tillage (S_Ts), and organic farming (O_Fs) systems. The analyses were performed in soil from the soil surface layers (up to 25 cm depth) of the experimental plots. The highest mean contents of soil organic carbon, total nitrogen, and organic matter fractions were determined in soils subjected to the simplified tillage system throughout the experimental period. During the study period, organic carbon concentration on surface soil layers under simplified tillage systems was 31 and 127% higher than the soil under conventional tillage systems and organic farming systems, respectively. Also, the total nitrogen concentration in those soils was more than 40% and 120% higher than conventional tillage systems and organic farming systems, respectively. Moreover, these soils were characterised by a progressive decline in SOC and Nt resources over the study years. There was no significant effect of the analysed tillage systems on the C:N ratio. The tillage systems induced significant differences in the activity of the analysed soil enzymes, i.e., dehydrogenase (DH) and catalase (CAT). The highest DH activity throughout the experiment was recorded in the O_Fs soils, and the mean value of this parameter was in the range of 6.01–6.11 μmol TPF·kg−1·h−1. There were no significant differences in the CAT values between the variants of the experiment. The results confirm that, regardless of other treatments, such as the use of organic fertilisers, tillage has a negative impact on the content of SOC and organic matter fractions in the O_Fs system. All simplifications in tillage reducing the interference with the soil surface layer and the use of organic fertilisers contribute to improvement of soil properties and enhancement of biological activity, which helps to maintain its productivity and fertility.


2013 ◽  
Vol 131 ◽  
pp. 28-35 ◽  
Author(s):  
Irfan Aziz ◽  
Tariq Mahmood ◽  
K. Rafiq Islam

2011 ◽  
Vol 35 (6) ◽  
pp. 1985-1994 ◽  
Author(s):  
Carina Rosa Álvarez ◽  
Alejandro Oscar Costantini ◽  
Alfredo Bono ◽  
Miguel Ángel Taboada ◽  
Flavio Hernán Gutiérrez Boem ◽  
...  

One of the expected benefits of no-tillage systems is a higher rate of soil C sequestration. However, higher C retention in soil is not always apparent when no-tillage is applied, due e.g., to substantial differences in soil type and initial C content. The main purpose of this study was to evaluate the potential of no-tillage management to increase the stock of total organic C in soils of the Pampas region in Argentina. Forty crop fields under no-tillage and conventional tillage systems and seven undisturbed soils were sampled. Total organic C, total N, their fractions and stratification ratios and the C storage capacity of the soils under different managements were assessed in samples to a depth of 30 cm, in three layers (0-5, 5-15 and 15-30 cm). The differences between the C pools of the undisturbed and cultivated soils were significant (p < 0.05) and most pronounced in the top (0-5 cm) soil layer, with more active C near the soil surface (undisturbed > no-tillage > conventional tillage). Based on the stratification ratio of the labile C pool (0-5/5-15 cm), the untilled were separated from conventionally tilled areas. Much of the variation in potentially mineralizable C was explained by this active C fraction (R² = 0.61) and by total organic C (R² = 0.67). No-till soils did not accumulate more organic C than conventionally tilled soils in the 0-30 cm layer, but there was substantial stratification of total and active C pools at no till sites. If the C stratification ratio is really an indicator of soil quality, then the C storage potential of no-tillage would be greater than in conventional tillage, at least in the surface layers. Particulate organic C and potentially mineralizable C may be useful to evaluate variations in topsoil organic matter.


Sign in / Sign up

Export Citation Format

Share Document