Soil Quality Indicators in Conventional and Conservation Tillage Systems in the Brazilian Cerrado

Author(s):  
Luiz Alberto da Silva Rodrigues Pinto ◽  
Sandra Santana de Lima ◽  
Cristiane Figueira da Silva ◽  
Rafael Gomes da Mota Gonçalves ◽  
Igor de Sousa Morais ◽  
...  

Abstract Conventional and conservation tillage systems can alter soil aggregation and total and labile soil organic matter (SOM) contents. This study aimed to determine the degree of soil aggregation, quantify total carbon (TC), permanganate oxidizable carbon (POXC), light organic matter (LOM), and potentially mineralizable carbon (CO2-C) contents in soils aggregates, and assess soil quality indices at sites under conventional and conservation tillage in the Cerrado region of Minas Gerais State, Brazil. Four experimental areas were analyzed: a area under conventional tillage for 20 years, a area under no-till for 6 years, a area under no-till for 18 years, and a reference area of undisturbed Cerrado vegetation. Soil aggregates retained on 8.0 to 4.0 mm sieves were evaluated for size class distribution and mean weight diameter. TC, POXC, LOM, daily and total CO2-C emissions were also analyzed. These data were used to calculate the C/N ratio and sensitivity, carbon pool, and lability indices. The results of SOM compartments were in agreement with those obtained for the soil aggregation status. Environmental conditions at no-till areas promoted macroaggregate formation and preserved TC and LOM contents, resulting in a high degree of aggregate stability. Soil quality indices were sensitive to identify changes between the reference area and managed areas. Soil aggregates from no-till areas had higher CO2-C emissions and accumulations than those from the conventional tillage area.

1989 ◽  
Vol 69 (3) ◽  
pp. 481-488 ◽  
Author(s):  
J. F. DORMAAR ◽  
C. W. LINDWALL

The Ap horizons of two conservation tillage studies on Dark Brown Chernozemic soils in southern Alberta were sampled in 1986 following the fallow year. The first study, started in 1967, consisted of a wheat-fallow rotation under either no-till chemical fallow, blade-cultivate, or chemical fallow + blade-cultivate management. The second study, started in 1977, consisted of continuous winter wheat, winter wheat-barley-fallow, and winter wheat-fallow rotations under either no-till or conventional tillage management. Nine years of no-till continuous wheat and 19 yr of no-till in a wheat-fallow rotation both led to 40% of the dry aggregates being > 0.84 mm in diameter. The parameters selected helped to characterize differences in organic matter between soil tillage systems. Dehydrogenase and phosphatase activities were twice as high under no-till as under the blade-cultivate treatment. No-till also led to the largest monosaccharide accumulation in the soil. Carbohydrates, solvent-extractable organic matter, and chitin N were significantly higher in the > 0.84 mm diameter dry aggregates from the no-till treatment. The monosaccarides under the blade-cultivate regime were generally of microbial origin whereas those under the no-till regime were generally of plant origin. Key words: Water-stable aggregates, dry aggregates, enzyme activities, organic carbon, monosaccharides, fallow


2011 ◽  
Vol 183-185 ◽  
pp. 1190-1194
Author(s):  
Jun Ke Zhang ◽  
Qing Ju Hao ◽  
Chang Sheng Jiang ◽  
Yan Wu

The impact of conservation tillage practices on carbon sequestration has been of great interest in recent years. This experiment analyzed the organic carbon status of soils sampled at depth increments from 0 to 60 cm after 20 years in a purple paddy soil. The tillage experiment was established in the Key Field Station for Monitoring of Eco-Environment of Purple Soil of the Ministry of Agriculture of China, located in the farm of Southwest University (30°26′N, 106°26′E), Chongqing. In this paper, five tillage treatments including conventional tillage with rice only system (DP), conventional tillage with rotation of rice and rape system (SL), no-till and ridge culture with rotation of rice and rape system (LM), no-till and plain culture with rotation of rice and rape system (XM) and tillage and ridge culture with rotation of rice and rape system (LF) were selected as research objectives to measure SOC storage and stratification ratio of SOC (CSR). The SOC storage under different tillage systems was calculated based on an equivalent soil mass. The CSR can be used as an indicator of soil quality because surface organic matter is essential to erosion control, water infiltration, and the conservation of nutrients. Results showed that in soil under no-till SOC was concentrated near the surface, while in tilled soil SOC decreased equably with the increase of soil depth. The difference of SOC contents between the five tillage systems was the largest in the top soil and the lowest in the bottom soil. The order of SOC storage was LM (158.52 Mg C•ha-1) >DP (106.74 Mg C•ha-1) >XM (100.11 Mg C•ha-1) >LF (93.11 Mg C•ha-1) >SL (88.59 Mg C•ha-1), LM treatment was significantly higher than the other treatments. The CSR of 0-10/50-60 cm was 2.65, 2.70 and 2.14 under LM, XM and LF treatments, while 1.54 and 1.92 under DP and SL treatments. We considered CSR>2 indicate an improvement in soil quality produced by changing from tillage to no-tillage, as well as changing from plane to ridge. Overall, long-term LM treatment is a valid strategy for increasing SOC storage and improving soil quality in a purple paddy soil in Southwest China.


2020 ◽  
Vol 61 (2) ◽  
pp. 323-338
Author(s):  
M. Bularda ◽  
I. Vişinescu ◽  
A. Ghiorghe ◽  
V. Vlăduţ ◽  
D. Cujbescu

In this paper was performed a thorough analysis of the effects of the conservative system of mechanized works, minimum-till (hard disc and scarifier) and no till (direct sowing), compared to the classic system (ploughing), highlighting the influences on soil and plants, the ways to reduce the technological costs, the improvement of soil quality indices, by accumulating organic matter and increasing humus supply, the need to reduce the traffic of mechanical equipment and opportunities to reduce fuel consumption, the improvement of conditions for retaining and capitalizing water reserves in the soil, the reduction of working hours and labour requirements.


2011 ◽  
Vol 71-78 ◽  
pp. 2759-2762
Author(s):  
Juan Peng ◽  
En Ci ◽  
Zhuo Wang Fu ◽  
Ming Gao ◽  
De Ti Xie

Effects of different tillage systems on organic carbon and carbon management index (CMI) in paddy soil of long-term experiment site (since 1990) were studied. The experiment included three tillage treatments: conventional tillage with rotation of rice and winter fallow (CT-r) system, no-tillage and ridge culture with rotation of rice and rape (RT-rr) system, and conventional tillage with rotation of rice and rape (CT-rr) system. Soil labile organic carbon measured by oxidation of KMnO4 respond rapidly to carbon supply changes, and it is considered as an important indicator of soil quality. Compared with CT-r system, long-term RT-rr system significantly increased total organic carbon and labile organic carbon in surface soil (0-10 cm and10-20 cm). The proportion of labile organic carbon to total organic carbon under RT-rr system was higher than other tillage systems. The carbon management index (CMI) is derived from the total soil organic carbon pool and carbon lability and is useful to evaluate the capacity of management systems to promote soil quality. The CMI increased in each layer under RT-rr system, while it decreased under CT-rr system. This indicated that conservation tillage improved the capacity of the management system into promoting soil quality in Sichuan Basin of China.


2020 ◽  
Author(s):  
Sattar Chavoshi Borujeni ◽  
Elham Chavoshi ◽  
Hamideh Nouri

<p><strong>Background and Objectives:</strong> Assessment of soil quality indices is important for identifying the effect of land use on soil function. Soil organic matter (SOM) is a major indicator of soil quality due to its capacity in affecting soil structure by enhancing aggregation. The aim of this study was to quantify the soil quality changes in pasture and agricultural lands around the Semirom city.</p><p><strong>Materials and Methods:</strong> The study was conducted in a completely randomized design with five different levels including pastures, orchards, rain fed farming, irrigated cultivations of wheat and barley with 6 repetitions. A composite random soil sampling was done from the depth of 0-15 cm. Soil properties such as electrical conductivity (EC), pH, wet aggregate stability, particulate organic matter (POM), soil organic carbon (SOC) and carbohydrates were measured in each land use.</p><p><strong>Results:</strong> The results showed that organic carbon (OC) and particulate organic carbon (POC) increased significantly in irrigated cultivation as compared to pasture. However particulate organic carbon was lower in rain fed farming compared with pasture. POC content were at least 2 times greater than those values in pasture and rain fed wheat farmlands. The highest carbohydrate amounts were observed in the irrigated wheat field (2 g kg<sup>-1</sup>) while the lowest values were belonged to the rain fed wheat cultivations (0.94 g kg<sup>-1</sup>). The content of carbohydrate had an increase of 40% in irrigated wheat field and a decrease of 50% in rain fed wheat field compared with pasture.The orchard and irrigated wheat and barley land uses had the highest mean weight diameter (MWD) of soil aggregates and the lowest values were obtained in the rain fed wheat and barley farming.</p><p><strong>Conclusion:</strong> Overall, the survey results indicate a better soil quality of the orchards and irrigated farmlands, whereas the rain fed farmlands had more feeble soil quality as compared to other investigated land uses. Particulate organic carbon and carbohydrate showed greater sensitivity to land use changes. Therefore, these parameters are better indicators as compared to other investigated indicator for evaluating soil quality in the studied area.</p>


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 208
Author(s):  
Małgorzata Szostek ◽  
Ewa Szpunar-Krok ◽  
Renata Pawlak ◽  
Jadwiga Stanek-Tarkowska ◽  
Anna Ilek

The aim of the study was to compare the effect of conventional, simplified, and organic farming systems on changes in the content of soil organic carbon, organic matter fractions, total nitrogen, and the enzymatic activity. The research was conducted from 2016–2018 on arable land in the south-eastern part of Poland. The selected soils were cultivated in conventional tillage (C_Ts), simplified tillage (S_Ts), and organic farming (O_Fs) systems. The analyses were performed in soil from the soil surface layers (up to 25 cm depth) of the experimental plots. The highest mean contents of soil organic carbon, total nitrogen, and organic matter fractions were determined in soils subjected to the simplified tillage system throughout the experimental period. During the study period, organic carbon concentration on surface soil layers under simplified tillage systems was 31 and 127% higher than the soil under conventional tillage systems and organic farming systems, respectively. Also, the total nitrogen concentration in those soils was more than 40% and 120% higher than conventional tillage systems and organic farming systems, respectively. Moreover, these soils were characterised by a progressive decline in SOC and Nt resources over the study years. There was no significant effect of the analysed tillage systems on the C:N ratio. The tillage systems induced significant differences in the activity of the analysed soil enzymes, i.e., dehydrogenase (DH) and catalase (CAT). The highest DH activity throughout the experiment was recorded in the O_Fs soils, and the mean value of this parameter was in the range of 6.01–6.11 μmol TPF·kg−1·h−1. There were no significant differences in the CAT values between the variants of the experiment. The results confirm that, regardless of other treatments, such as the use of organic fertilisers, tillage has a negative impact on the content of SOC and organic matter fractions in the O_Fs system. All simplifications in tillage reducing the interference with the soil surface layer and the use of organic fertilisers contribute to improvement of soil properties and enhancement of biological activity, which helps to maintain its productivity and fertility.


2013 ◽  
Vol 131 ◽  
pp. 28-35 ◽  
Author(s):  
Irfan Aziz ◽  
Tariq Mahmood ◽  
K. Rafiq Islam

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e84988 ◽  
Author(s):  
Scott Devine ◽  
Daniel Markewitz ◽  
Paul Hendrix ◽  
David Coleman

2011 ◽  
Vol 35 (6) ◽  
pp. 1985-1994 ◽  
Author(s):  
Carina Rosa Álvarez ◽  
Alejandro Oscar Costantini ◽  
Alfredo Bono ◽  
Miguel Ángel Taboada ◽  
Flavio Hernán Gutiérrez Boem ◽  
...  

One of the expected benefits of no-tillage systems is a higher rate of soil C sequestration. However, higher C retention in soil is not always apparent when no-tillage is applied, due e.g., to substantial differences in soil type and initial C content. The main purpose of this study was to evaluate the potential of no-tillage management to increase the stock of total organic C in soils of the Pampas region in Argentina. Forty crop fields under no-tillage and conventional tillage systems and seven undisturbed soils were sampled. Total organic C, total N, their fractions and stratification ratios and the C storage capacity of the soils under different managements were assessed in samples to a depth of 30 cm, in three layers (0-5, 5-15 and 15-30 cm). The differences between the C pools of the undisturbed and cultivated soils were significant (p < 0.05) and most pronounced in the top (0-5 cm) soil layer, with more active C near the soil surface (undisturbed > no-tillage > conventional tillage). Based on the stratification ratio of the labile C pool (0-5/5-15 cm), the untilled were separated from conventionally tilled areas. Much of the variation in potentially mineralizable C was explained by this active C fraction (R² = 0.61) and by total organic C (R² = 0.67). No-till soils did not accumulate more organic C than conventionally tilled soils in the 0-30 cm layer, but there was substantial stratification of total and active C pools at no till sites. If the C stratification ratio is really an indicator of soil quality, then the C storage potential of no-tillage would be greater than in conventional tillage, at least in the surface layers. Particulate organic C and potentially mineralizable C may be useful to evaluate variations in topsoil organic matter.


Sign in / Sign up

Export Citation Format

Share Document