Study on Interaction between Cerium and Arsenic

2011 ◽  
Vol 194-196 ◽  
pp. 1231-1234 ◽  
Author(s):  
Jin Zhu Zhang ◽  
Sheng Tao Dou

The interaction among Cerium, Arsenic and Iron at high temperature were studied by means of electron probe microanalysis, optical microscopy and X-ray diffraction. The result shows that the binary compound CeAs is the main interaction product when the atomic ratio of Ce to As is 1:2. The eutectic compound Fe2As can be precipitated from ferrite with the temperature decreasing, and the gray phase in bright field might be a ternary compound Ce12Fe57.5As41.

2012 ◽  
Vol 482-484 ◽  
pp. 1281-1284
Author(s):  
Yuan Zhi Lin ◽  
Xiao Dong Liu ◽  
Jin Zhu Zhang

The interaction in the Cerium-Arsenic-Iron system at high temperature were studied by means of electron probe microanalysis, optical microscopy and X-ray diffraction. The results show that the CeAs is the main product when the atomic ratio of Cerium to Arsenic is 1:2, and a light gray phase in bright field might be a ternary compound Ce12Fe57.5As41. The diffusion coefficient of Arsenic in iron was calculated as 1.606×10-13m2/S.


2013 ◽  
Vol 702 ◽  
pp. 145-148 ◽  
Author(s):  
Xiao Dong Liu ◽  
Jin Zhu Zhang ◽  
Si Si Zhu

The interaction among Lanthanum, Arsenic and Iron at 1223K were studied by means of electron probe microanalysis, optical microscopy and X-ray diffraction. The result shows that the gray phase might be a ternary compound La10Fe50As40, and the binary compound LaAs and the ternary compound La10Fe50As40 are the main interaction products when the atomic ratio of La to As is 1:3. The eutectic compound Fe2As can be precipitated from ferrite with the temperature decreasing.


2012 ◽  
Vol 460 ◽  
pp. 103-106
Author(s):  
Sheng Tao Dou ◽  
Jin Zhu Zhang ◽  
Jun Huang

The interaction among Cerium, Arsenic and Iron at high temperature in a pressure-tight reactor were studied by means of electron probe microanalysis, optical microscopy and X-ray diffraction to understand what compounds could be developed and how about their stability chemically should be. The result shows that the binary compound CeAs is the main product on condition that the atomic ratio of Cerium to Arsenic is 2:1. There are some Fe2Ce, Ce4As3 and Fe17Ce2 compounds developed meanwhile. The amount of Fe17Ce2 phase by the base of steel increased with time prolonging at high temperature


2014 ◽  
Vol 887-888 ◽  
pp. 467-470
Author(s):  
Si Si Zhu ◽  
Jin Zhu Zhang ◽  
Wei Yu Yang

In this study, a certain amount of Cerium and Arsenic were closed in the barrel-shaped cylinder machined by H08 steel, heated to 1173 K for 50 h, and the interaction among the cerium, arsenic and iron in the barrel-shaped cylinder was studied by X-ray diffraction, optical microscopy and electronic probe microscopy analysis. The result shows that the gray phase is the ternary compound Ce12Fe57.5As41, and the ternary compound Ce12Fe57.5As41 is the main interaction product when the atomic ratio of Ce to As is 1:3. The eutectic compound Fe2As can be precipitated from ferrite with the temperature decreasing.


2003 ◽  
Vol 18 (12) ◽  
pp. 2814-2819 ◽  
Author(s):  
Tetsuji Saito ◽  
Hironori Sato ◽  
Tetsuichi Motegi

The use of the glass slag method in the extraction of rare earth from La–Ni alloys was studied. X-ray diffraction and electron probe microanalysis studies revealed that the La–Ni alloys produced by the glass slag method using boron trioxide consisted of Ni and Ni3B phases. No La-containing phase such as the LaNi5 phase and the La oxide phase was found in the resultant alloys. The chemical analyses confirmed that the La content in the alloys produced by the glass slag method was very limited. However, the glass slag materials contained a large amount of lanthanum. The La in the La–Ni alloys was successfully extracted by the glass slag method using boron trioxide.


2007 ◽  
Vol 62 (11) ◽  
pp. 1383-1389 ◽  
Author(s):  
Barbara Schüpp-Niewaa ◽  
Larysa Shlyk ◽  
Yurii Prots ◽  
Gernot Krabbes ◽  
Rainer Niewa

Dark red single crystals of the new phases Ba3YRu0.73(2)Al1.27(2)O8 and Ba5Y2Ru1.52(2)Al1.47(2)O13.5 have been grown from powder mixtures of BaCO3, Y2O3, Al2O3, and RuO2 . The compositions given in the formulas result from the refinements of the crystal structures based on single crystal X-ray diffraction data (hexagonal P63/mmc (No. 194), Z = 2, Ba3 YRu0.73(2)Al1.27(2)O8: a = 5.871(1), c = 14.633(3) Å , R1 = 0.035, wR2 = 0.069 and Ba5Y2Ru1.52(2)Al1.47(2)O13.5: a = 5.907(1), c = 24.556(5) Å, R1 = 0.057, wR2 = 0.114). Ba3YRu0.73(2)Al1.27(2)O8 crystallizes in a 6H perovskite structure, Ba5Y2Ru1.52(2)Al1.47(2)O13.5 has been characterized as a 10H Perovskite. Due to similar spatial extensions of (Ru2O9) facesharing pairs of octahedra and (Al2O7) vertex-sharing pairs of tetrahedra, both structures show partial mutual substitution of these units. Consequently, the title compounds may be written as Ba3Y(Ru2O9)1−x(Al2O7)x, x = 0.64(1) and Ba5Y2RuO6(Ru2O9)1−x(Al2O7)x, x = 0.74(1). This interpretation is supported by the results of electron probe microanalysis using wavelength-dispersive X-ray spectroscopy. An oxidation state of Ru close to +5 for the (Ru2O9) units, as can be derived from the distances d(Ru-Ru), additionally leads to similar charges of both the (Ru2O9) and the (Al2O7) units.


2013 ◽  
Vol 820 ◽  
pp. 71-74
Author(s):  
Xiao Hua Wang ◽  
Wei He ◽  
Ling Min Zeng

Binary compound Y3Fe29cannot be directly formed by rare earth Y and Fe and the third element M (non-iron transition elements) must be introduced to form ternary compound Y3(Fe,M)29. In this work, six alloys with compositions of the Y3Fe29-xCrx(x=1,2,3,4,5,6) were prepared and investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and differential thermal analysis (DTA). The study on the thermal stability of these compounds points to that the compoundY3(Fe,Cr)29is a high temperature phase and exists above 1100K. The alloys with single-phase of Y3(Fe,Cr)29was decomposed into Y2(Fe,Cr)17and Y(Fe,Cr)12annealed at high temperature 1100K.


1996 ◽  
Vol 11 (9) ◽  
pp. 2142-2151 ◽  
Author(s):  
Libin Liu ◽  
Zhanpeng Jin

The phases present around the (Bi, Pb)2Sr2Ca2Cu3Ox (2223) phase between 830–880 °C have been studied by x-ray diffraction (XRD) and electron probe microanalysis (EPMA) methods. The decomposition and melting temperatures of the 2223 phase in these samples have been measured by the differential thermal analysis (DTA) method. Partial substitution of Bi with Pb (Pb: Bi = 3: 22) does not change the 850 °C phase relations around 2223 phase. 2223 decomposes to liquid, Sr7Ca7Cu24O41 (7724), and Ca2CuO3 at 875 °C. The invariant reactions (degree of freedom is zero) among 2223, 7724, Ca2CuO3, CuO, Bi2Sr2CaCu2O8 (2212), and liquid were proposed to be L + 7724 + Ca2CuO3 → 2223 + 2212, L + 7724 + Ca2CuO3 → 2223 + CuO, L + 7724 → 2223 + 2212 + CuO. The reaction temperatures were estimated to be 860 °C, 860 °C, and 854 °C, respectively. An invariant reaction scheme and a tentative liquidus projection were sketched out.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Veronique Da Ros ◽  
Juliusz Leszczynski ◽  
Bertrand Lenoir ◽  
Anne Dauscher ◽  
Christophe Candolfi ◽  
...  

AbstractThe preparation of partially filled n-type InxCo4Sb12 skutterudite compounds has been recently reported. The results were particularly promising, the materials exhibiting a ZT value far higher than one at moderated temperature. In this paper, we propose to investigate another way to tune the electrical and thermal properties by substituting Co atoms by Ni atoms in InxCo4Sb12. InxCo4-yNiySb12 polycrystalline samples have been prepared by a conventional metallurgical route. Structural analyses have been carried out by X-ray diffraction. The chemical composition and micro-homogeneity have been checked by electron probe microanalysis. Measurements of the electrical resistivity, thermoelectric power and thermal conductivity have been performed between 300 and 800 K. The influence of the presence of Ni on the thermoelectric properties of InxCo4Sb12 compounds is presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document