Investigation on the Thermal Stability of the Compounds Y3Fe29-xCrx

2013 ◽  
Vol 820 ◽  
pp. 71-74
Author(s):  
Xiao Hua Wang ◽  
Wei He ◽  
Ling Min Zeng

Binary compound Y3Fe29cannot be directly formed by rare earth Y and Fe and the third element M (non-iron transition elements) must be introduced to form ternary compound Y3(Fe,M)29. In this work, six alloys with compositions of the Y3Fe29-xCrx(x=1,2,3,4,5,6) were prepared and investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and differential thermal analysis (DTA). The study on the thermal stability of these compounds points to that the compoundY3(Fe,Cr)29is a high temperature phase and exists above 1100K. The alloys with single-phase of Y3(Fe,Cr)29was decomposed into Y2(Fe,Cr)17and Y(Fe,Cr)12annealed at high temperature 1100K.

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 676
Author(s):  
Christian Bäucker ◽  
Soeren Bauch ◽  
Rainer Niewa

We report the successful synthesis of Rb2[Mn(NH2)4] and Cs2[Mn(NH2)4] from ammonothermal conditions at 723 K and pressures above 850 bar. Both compounds were obtained single phase according to powder X-ray diffraction. The crystal structures were determined by single crystal X-ray diffraction. For Rb2[Mn(NH2)4] we have obtained the high-temperature phase. The structures are analyzed with respect to the earlier reported alkali metal amidomanganates. Upon heating in inert atmosphere Cs2[Mn(NH2)4] decomposes to manganese nitrides. IR spectroscopic results are reported.


1996 ◽  
Vol 52 (a1) ◽  
pp. C364-C364
Author(s):  
J. A. Guevara ◽  
S. L. Cuffini ◽  
Y. P. Mascarenhas ◽  
P. de la Presa ◽  
A. Ayala ◽  
...  

2018 ◽  
Vol 24 (S1) ◽  
pp. 2248-2249
Author(s):  
M. Ramírez-Cardona ◽  
M.P. Falcón-León ◽  
G. Luis-Raya ◽  
G. Mejía-Hernández ◽  
R. Arceo ◽  
...  

2003 ◽  
Vol 58 (1) ◽  
pp. 155-158 ◽  
Author(s):  
Olaf Reckeweg ◽  
Cora Lind ◽  
Arndt Simon ◽  
J. Salvo

Abstract CuCN was investigated by chemical analysis, IR spectroscopy and powder X-ray diffraction. A high-temperature phase of CuCN was identified and structurally characterized by Rietveld refinement. HT-CuCN is isotypic to AgCN (R3m (No. 166), Z = 3, a = 597.109(8), c = 484.33(5) pm, Cu (3a), C/N (6c), z = 0.3915(10) at 77 K) with head-tail disorder of the cyanide anions.


1985 ◽  
Vol 63 (2) ◽  
pp. 324-328 ◽  
Author(s):  
M. Sunitha Kumari ◽  
Etalo A. Secco

Order–disorder transitions occurring in the Ag2SO4–K2SO4 system were investigated by reaction kinetics, thermal analyses, X-ray diffraction, and electrical conductivity techniques. Solid–liquid and solid–solid phase diagrams are reported.The conductivity data in the high temperature phase of the solid resemble superionic conductivity behavior. The higher conductivity of Ag2SO4 with K+ presence relative to pure Ag2SO4 and Ag2−xNaxSO4 compositions support a lattice expansion facilitating higher mobility of ions.The reaction kinetics, X-ray diffraction, and electroconductivity results suggest a relatively open periodic [Formula: see text] sublattice in the high-temperature phase of the sulfate-based systems studied in this series.


Sign in / Sign up

Export Citation Format

Share Document