Investigation of the Performance of V-W Based Catalysts at Low Temperature for NOx Reduction with NH3

2011 ◽  
Vol 197-198 ◽  
pp. 811-816
Author(s):  
Xin Na Tian ◽  
You Hong Xiao ◽  
Wen Ping Zhang ◽  
Yong Wei Chen

The most potential method of selective catalytic reduction (SCR) to remove NOx from diesel engine emissions is very effective in NOx reduction with an efficiency up to 95%. However, the current SCRs have a limitation on operation temperature and a narrow operation temperature window. In this paper, the V-W based catalysts were used in the investigation to improve the low temperature performance of NOx conversion by doping Cu and Mn into V-W based catalyst. The temperature range studied was between 150 °C and 550 °C with an interval of 50 °C. The honeycomb catalysts were prepared by an impregnation method. The study also included characterization of catalysts by BET, XRD, TPD and XPS methods.It is found that NOx conversion performance of the V-W based catalyst increases with the increase of reaction temperature. After the metal Cu or Mn doped into the catalyst, it offers an improvement in the catalytic performance. Among all the catalysts studied, the mixed metal catalyst of Cu-Mn-V-W catalyst is found the most potential one, not only because of its higher NOx conversion rate at a low temperature, but also because of its wider operation temperature window.

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1966
Author(s):  
Shiyong Yu ◽  
Jichao Zhang

A systematic modeling approach was scrutinized to develop a kinetic model and a novel monolith channel geometry was designed for NH3 selective catalytic reduction (NH3-SCR) over Cu-ZSM-5. The redox characteristic of Cu-based catalysts and the variations of NH3, NOx concentration, and NOx conversion along the axis in porous media channels were studied. The relative pressure drop in different channels, the variations of NH3 and NOx conversion efficiency were analyzed. The model mainly considers NH3 adsorption and desorption, NH3 oxidation, NO oxidation, and NOx reduction. The results showed that the model could accurately predict the NH3-SCR reaction. In addition, it was found that the Cu-based zeolite catalyst had poor low-temperature catalytic performance and good high-temperature activity. Moreover, the catalytic reaction of NH3-SCR was mainly concentrated in the upper part of the reactor. In addition, the hexagonal channel could effectively improve the diffusion rate of gas reactants to the catalyst wall, reduce the pressure drop and improve the catalytic conversion efficiencies of NH3 and NOx.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 321 ◽  
Author(s):  
Tuan Doan ◽  
Phong Dam ◽  
Khang Nguyen ◽  
Thanh Huyen Vuong ◽  
Minh Thang Le ◽  
...  

SAPO-34 was prepared with a mixture of three templates containing triethylamine, tetraethylammonium hydroxide, and morpholine, which leads to unique properties for support and production cost reduction. Meanwhile, Cu/SAPO-34, Fe/SAPO-34, and Cu-Fe/SAPO-34 were prepared through the ion-exchanged method in aqueous solution and used for selective catalytic reduction (SCR) of NOx with NH3. The physical structure and original crystal of SAPO-34 are maintained in the catalysts. Cu-Fe/SAPO-34 catalysts exhibit high NOx conversion in a broad temperature window, even in the presence of H2O. The physicochemical properties of synthesized samples were further characterized by various methods, including XRD, FE-SEM, EDS, N2 adsorption-desorption isotherms, UV-Vis-DRS spectroscopy, NH3-TPD, H2-TPR, and EPR. The best catalyst, 3Cu-1Fe/SAPO-34 exhibited high NOx conversion (> 90%) in a wide temperature window of 250–600 °C, even in the presence of H2O. In comparison with mono-metallic samples, the 3Cu-1Fe/SAPO-34 catalyst had more isolated Cu2+ ions and additional oligomeric Fe3+ active sites, which mainly contributed to the higher capacity of NH3 and NOx adsorption by the enhancement of the number of acid sites as well as its greater reducibility. Therefore, this synergistic effect between iron and copper in the 3Cu-1Fe/SAPO-34 catalyst prompted higher catalytic performance in more extensive temperature as well as hydrothermal stability after iron incorporation.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 375 ◽  
Author(s):  
Wenyi Zhao ◽  
Zhaoqiang Li ◽  
Yan Wang ◽  
Rongrong Fan ◽  
Cheng Zhang ◽  
...  

A series of Ce and/or Zr modified WO3-TiO2 catalysts were synthesized by the impregnation method, which were employed for NH3-SCR reaction. The T50 contour lines of NOx were used to quickly optimize catalyst composition, the Ce20Zr12.5WTi catalyst was considered to be the optimization result, and also exhibited excellent NH3-SCR activity and thermal stability with broad operation temperature window, which is a very promising catalyst for NOx abatement from diesel engine exhaust. The excellent catalytic performance is associated with the formation of Ce-Zr solid solution. The introduction of Zr to CeWTi catalyst facilitated the redox of Ce4+/Ce3+ and the formation of more acid sites, more Ce3+ ions, more oxygen vacancies, larger quantities of surface adsorbed oxygen species and NH3, which were beneficial for the excellent selective catalytic reduction (SCR) performance.


2017 ◽  
Vol 898 ◽  
pp. 1905-1915 ◽  
Author(s):  
Kai Qi ◽  
Jun Lin Xie ◽  
Feng Xiang Li ◽  
Feng He

The samples of MnOx/TiO2 catalysts supported on cordierite honeycomb ceramics were prepared by a sol-gel-impregnation method, and evaluated for low-temperature (353-473 K) selective catalytic reduction (SCR) of NOx with NH3. The influences of pretreatment on cordierite and catalyst dosage were investigated at first and optimized as follows: pickling for cordierite honeycomb ceramics with 1 mol/L HNO3 for 3 h prior to loading procedure as well as the catalyst dosage of 3-5 wt.%. The activity results indicated that there was an optimum working condition for MnOx/TiO2/cordierite catalysts: NH3/NO molar ratio=1.1, [O2]=3 vol.%, GHSV=5514 h-1, the highest activity of nearly 100% NO conversion could be obtained. As a comparison, the performances of commercialized vanadium-based honeycomb catalyst were also employed, which revealed the narrower scope of application of GHSV and the higher active temperature window. In conclusion, it turns out that the prepared MnOx/TiO2/cordierite catalysts are more applicable as a low-temperature SCR catalyst for NOx removal in a more complicated application environment.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1020
Author(s):  
Yizhe Helian ◽  
Suping Cui ◽  
Xiaoyu Ma

Selective catalytic reduction (SCR) technology is the most widely used flue gas denitration technology at present. The stability of a catalyst is the main factor limiting the development of this technology. In this study, an environmentally friendly and highly efficient NH3-SCR catalyst was prepared by coprecipitation method from acidolysis residue of industrial waste and tourmaline. We found that the addition of tourmaline has an important impact on the denitration activity of the catalytic material. The NOx conversion exceeded 97% at 200 °C with the dosage of 10% tourmaline, which is about 7% higher than that without doping. The improvement of catalytic performance was mostly attributed to the permanent electrodes of tourmaline, which effectively promotes the dispersion of MnOx/TiO2 catalytic materials, increases the number of acidic sites and changes the valence distribution of manganese ions in products, which speeds up the diffusion of protons and ions, resulting in the acceleration of redox reaction. These as-developed tourmaline-modified MnOx/TiO2 materials have been demonstrated to be promising as a new type of highly efficient low-temperature NH3-SCR catalyst.


2020 ◽  
Vol 1001 ◽  
pp. 79-83
Author(s):  
Zhen Xing Han ◽  
Si Xi Guo ◽  
Kai Ming Li ◽  
Bing Yao ◽  
Ming Song ◽  
...  

The hydrogenation of CO2 to CH4 can realize the utilization of CO2, which has an important implications to both the energy and environment. As a result of the low catalytic activity of the supported Ni/SiO2 catalyst, the ZrO2 is added to improve its catalytic performance by the impregnation method. The experimental results show that ZrO2 is an effective promoter to enhance the low-temperature catalytic activity of Ni/SiO2 catalyst.


RSC Advances ◽  
2017 ◽  
Vol 7 (39) ◽  
pp. 24177-24187 ◽  
Author(s):  
Haidi Xu ◽  
Mengmeng Sun ◽  
Shuang Liu ◽  
Yuanshan Li ◽  
Jianli Wang ◽  
...  

The calcined temperature of the carrier obviously affected SCR activity of catalysts, WO3/Ce0.68Zr0.32O2-500 showed the best low-temperature NH3-SCR activity due to its more Lewis acid sites and stronger redox property.


2011 ◽  
Vol 356-360 ◽  
pp. 1528-1534
Author(s):  
Wei Fang Dong

A series of non-precious metal oxides catalysts were prepared for low-temperature selective catalytic reduction (SCR) of NOx with NH3 in a fixed bed reactor. The catalytic performance was evaluated by the removal efficiency of NOx and N2selectivity which were respectively detected by flue gas analyzer and flue gas chromatograph. Furthermore, the components of gas products from the above experiments were analysed with 2010 GC-MS. The results illustrated that the MnO2exhibited the highest NOx conversion to 95.46% and the highest selectivity of N2to 100% at temperature of 393K, then followed ZrO2, Al2O3and Fe2O3.


Sign in / Sign up

Export Citation Format

Share Document