Study on Physical Simulation Experiments of Different Chemical Displacement Systems

2011 ◽  
Vol 201-203 ◽  
pp. 2562-2566
Author(s):  
Wen Xiang Wu ◽  
Deng Hui Mu ◽  
Qing Dong Liu

In the reservoir condition of Liaohe oil field, the indoor physical simulation experiments of polymer / surfactant binary combination flooding and polymer / surfactant / alkali (ASP) flooding in the artificial cores have been conducted. The results show that enhanced oil recovery of polymer flooding is about 24.4%, by utilizing experiment project that polymer molecular weight is 19 million, main slug concentration is 1500mg/L. Binary flooding system that molecular weight of polymer is 19 million, main slug concentration is 1500mg/L, 0.3% surfactant YR has improved the oil recovery by 30.1%. The ASP flooding system (19 million 1500mg/L polymer +0.3% surfactant SS+ 1.2%Na2CO3) has improved the oil recovery by 28.4%. It can be seen that the binary flooding system is best.

Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1086 ◽  
Author(s):  
Haiyan Zhou ◽  
Afshin Davarpanah

Simultaneous utilization of surfactant and preformed particle gel (henceforth; PPG) flooding on the oil recovery enhancement has been widely investigated as a preferable enhanced oil recovery technique after the polymer flooding. In this paper, a numerical model is developed to simulate the profound impact of hybrid chemical enhanced oil recovery methods (PPG/polymer/surfactant) in sandstone reservoirs. Moreover, the gel particle conformance control is considered in the developed model after polymer flooding performances on the oil recovery enhancement. To validate the developed model, two sets of experimental field data from Daqing oil field (PPG conformance control after polymer flooding) and Shengli oil field (PPG-surfactant flooding after polymer flooding) are used to check the reliability of the model. Combination of preformed gel particles, polymers and surfactants due to the deformation, swelling, and physicochemical properties of gel particles can mobilize the trapped oil through the porous media to enhance oil recovery factor by blocking the high permeable channels. As a result, PPG conformance control plays an essential role in oil recovery enhancement. Furthermore, experimental data of PPG/polymer/surfactant flooding in the Shengli field and its comparison with the proposed model indicated that the model and experimental field data are in a good agreement. Consequently, the coupled model of surfactant and PPG flooding after polymer flooding performances has led to more recovery factor rather than the basic chemical recovery techniques.


1977 ◽  
Vol 17 (03) ◽  
pp. 193-200 ◽  
Author(s):  
M.C. Puerto ◽  
W.W. Gale

Abstract Economic constraints are such that it is unlikely a pure surfactant will be used for major enhanced oil recovery projects. However, it is possible to manufacture at competitive prices classes of syntheic and natural petroleum sulfonates that have fairly narrow molecular-weight distributions. Under some reservoir conditions, one of these narrow-distribution sulfonates may serve quite well as the basic component of a surfactant flood, however, in many instances a mixture of two or more of these may be required. Since evaluation of a significant subset of "all possible combinations" is a formidable undertaking screening techniques must be established that can reduce the number of laboratory core floods required. It is well known that interfacial tension plays a dominant role in surfactant flooding. It has recently been shown that minimal interfacial tensions occur at optimal salinity, Cphi, where the solubilization parameters VO/Vs and Vw/Vs are equal. Additionally, it has been shown that interracial tensions are inversely proportional to the magnitude of the solubilization parameters. This paper demonstrates that optimal salinity and solubilization parameters for any mixture of orthoxylene sulfonates can be estimated by summation of mole-fraction-weighted component properties. Those properties, which could not be properties. Those properties, which could not be measured directly, were obtained by least-squares regression on mixture data. Moreover, for surfactants of known carbon number distributions, equations that are linear in mole fractions of components and logarithmic in alkyl carbon number were found to be excellent estimators of both Cphi and solubilization parameters evaluated at Cphi. parameters evaluated at Cphi. Optimal salinity and associated solubilization parameters were measured using constant weight parameters were measured using constant weight fractions of alcohol cosolvents and mixtures of seven products with narrow molecular weight distributions. The average alkyl carbon number of these products varied from about 8 to 19. Alkyl chain lengths of individual surfactant chemical species ranged from 6 to 24 carbon atoms. Introduction Optimal salinity and the amounts of oil and water contained in a microemulsion have been shown to play important roles in obtaining low interfacial tensions and high oil recoveries. Since economics of enhanced oil recovery projects demand use of inexpensive surfactants, broad-distribution products likely will be chosen. Knowledge of how to estimate optimal salinity and oil-water contents of microemulsions prepared from such products would reduce time involved in laboratory screening procedures. This paper presents a method for procedures. This paper presents a method for obtaining such estimates that should prove useful for all types of surfactant mixtures that involve homologous series. The basic concept used is that a given property of a mixture of components (Yi) is related to the sum of products of mole fraction of components in the mixture (Xij) and the "mixing value" of the property in question for that component (Y'j). In property in question for that component (Y'j). In other words, (1) This approach is similar, for example, to the pseudocritical method used by Kay to calculate pseudocritical method used by Kay to calculate gas deviation factors at high pressures. The properties of interest in this paper are optimal properties of interest in this paper are optimal salinity and solubilization parameters, Vo/Vs, and Vw/Vs, at optimal salinity. Two separate approaches were developed that depended on the degree of detail of the available surfactant-composition data. In the first approach, only average molecular weights of several surfactant products were assumed known. Optimal salinity and products were assumed known. Optimal salinity and solubilization parameters could be measured for some, but not all, of the products. Regression on mixture data was used to estimate these quantities for the remainder of the products. Those properties, either measured experimentally or estimated from mixture data, are referred to as surfactant product contributions since they can be used as mixing values of the property in question in Eq. 1 or Eq. 2. SPEJ P. 193


Soft Matter ◽  
2021 ◽  
Author(s):  
Massinissa Hamouna ◽  
Aline Delbos ◽  
Christine Dalmazonne ◽  
Annie Colin

In the context of enhanced oil recovery or soil remediation, we study the role of interactions between polymers and surfactants on the injectivity of formulations containing mixtures of polymers and...


2018 ◽  
Author(s):  
Cai Hongyan ◽  
Cheng Jie ◽  
Fan Jian ◽  
Luan Hexin ◽  
Wang Qing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document