Cathodic Protection Performance of Al-Zn-In-Mg-Ga-Mn Sacrificial Anode

2011 ◽  
Vol 214 ◽  
pp. 296-300
Author(s):  
Yan Bin Huang ◽  
Gao Wei Song ◽  
Hua Dong Ding ◽  
Xue Bin Liu ◽  
Xin Hai Shao

The solubility and cathodic protection performance of Al-Zn-In-Mg-Ga-Mn sacrificial anode in natural corrosion and self-discharge experiment was studied using electrochemistry impedance spectrum technology, weight-loss measurement and SEM. The results show that the corrosion rate of 7A52 was decreased under the protection of sacrificial anodes in the self-discharge experiment, and sacrificial anodes dissolved uniformity due to the effect of active location, the corrosion products are easy to shed. Only location corrosion occurs on the sacrificial anode’s surface which is influenced by corrosion products and oxide film in natural corrosion experiment.

2011 ◽  
Vol 306-307 ◽  
pp. 1619-1622 ◽  
Author(s):  
Yan Bin Huang ◽  
Gao Wei Song ◽  
Hua Dong Ding ◽  
Xin Hai Shao

The dissolve behavior and cathode protection performance of Al-Zn-In-Mg-Ti anode was studied by electrochemistry impedance spectrum technology, weight-loss measurement and SEM in natural corrosion and self-discharge experiment. The results show that the 7A52 corrosion rate was decreased at a certain extent which under the protection of sacrifice anode in the self-discharge experiment, but the protection was inefficient and sacrificial anode corrosion products fell off uneasily. Natural corrosion sacrifice anode surface influenced by the corrosion product and the oxide film, the number of active pot was reduced with the progress of experiment.


2012 ◽  
Vol 628 ◽  
pp. 135-143
Author(s):  
Kadhim F. Al-Sultani ◽  
Jenan Nasser Nabat

Sacrificial anode cathodic protection is one of the most widely used methods in protecting buried oil pipe lines against the corrosion damages. In the present work, a series of Aluminum alloys have been prepared as sacrificial anodes candidates to be used in the protection of the oil pipelines that pass through the Al-Hilla region. These prepared alloys were microstructurally and electrochemically characterized to evaluate their performance as Al-sacrificial anodes for cathodic protection of oil pipes The relationships between the protection potential with time, sacrificial anode life, discharge currents, and capacity of sacrificial anodes were found, taking into consideration the distance between sacrificial anode and protected steel sample. According to the results obtained, the best selection of sacrificial anodes was (Al-4% Zn-0.5% Sn) alloy at 30cm in Al-Hilla region.


2012 ◽  
Vol 468-471 ◽  
pp. 1585-1594 ◽  
Author(s):  
Kadhim F. Al-Sultani ◽  
Jnan Nasser Nabat

Abstract Sacrificial anode cathodic protection is one of the most widely used methods in protecting buried oil pipe lines against the corrosion damages. In the present work, a series of Aluminum alloys have been prepared as sacrificial anodes candidates to be used in the protection of the oil pipelines that pass through the Al-Mahawil region. These prepared alloys were microstructurally and electrochemically characterized to evaluate their performance as Al-sacrificial anodes for cathodic protection of oil pipes The relationships between the protection potential with time, sacrificial anode life, discharge currents, and capacity of sacrificial anodes were found, taking into consideration the distance between sacrificial anode and protected steel sample. According to the results obtained, the best selection of sacrificial anodes was Al-4% Zn-0.4% Sn) alloy at 30cm in Al-Mahawil region.


2014 ◽  
Vol 1015 ◽  
pp. 215-218
Author(s):  
Ya Ping Wang

In this work, the thermal spraying sacrificial anode was investigated as reinforced concrete structure cathodic protection method. During our experiment, the performance of the thermal spraying sacrificial anode was studied using electrochemical method, metallographic microscopy method and simulation tests. And the results show that the thermal spraying sacrificial anodes are better than traditional sacrificial anodes. The method of thermal spraying applied in sacrificial anode field is successful, which solve the problem of insufficient driving initial potential of traditional sacrificial anode in the concrete structure.


2021 ◽  
Author(s):  
Thierry Dequin ◽  
Clark Weldon ◽  
Matthew Hense

Abstract Flexible risers are regularly used to produce oil and gas in subsea production systems and by nature interconnect the subsea production system to the floating or fixed host facilities. Unbonded flexible pipes are made of a combination of metallic and non-metallic layers, each layer being individually terminated at each extremity by complex end fittings. Mostly submerged in seawater, the metallic parts require careful material selection and cathodic protection (CP) to survive the expected service life. Design engineers must determine whether the flexible pipe risers should be electrically connected to the host in order to receive cathodic protection current or be electrically isolated. If the host structure is equipped with a sacrificial anode system, then electrical continuity between the riser and the host structure is generally preferred. The exception is often when the riser and host structure are operated by separate organizations, in which case electrical isolation may be preferred simply to provide delineation of ownership between the two CP systems. The paper discusses these interface issues between hull and subsea where the hull is equipped with an impressed current cathodic protection (ICCP) system, and provides guidance for addressing them during flexible pipe CP design, operation, and monitoring. Specifically, CP design philosophies for flexible risers will be addressed with respect to manufacturing, installation and interface with the host structure’s Impressed Current Cathodic Protection (ICCP) system. The discussion will emphasize the importance of early coordination between the host structure ICCP system designers and the subsea SACP system designers, and will include recommendations for CP system computer modeling, CP system design operation and CP system monitoring. One of the challenges is to understand what to consider for the exposed surfaces in the flexible pipes and its multiple layers, and also the evaluation of the linear resistance of each riser segment. The linear resistance of the riser is a major determinant with respect to potential attenuation, which in turn largely determines the extent of current drain between the subsea sacrificial anode system and the hull ICCP system. To model the flexible riser CP system behavior for self-protection, linear resistance may be maximized, however the use of a realistic linear resistance is recommended for evaluation of the interaction between the host structure and subsea system. Realistic flexible linear resistance would also reduce conservatism in the CP design, potentially save time during the offshore campaign by reducing anode quantities, and also providing correct evaluation of drain current and stray currents.


Author(s):  
Cilya Oulmas ◽  
Sonia Mameri ◽  
Dalila BOUGHRARA ◽  
Slimane Bouterfaia ◽  
Joseph Delhalle ◽  
...  

2011 ◽  
Vol 339 ◽  
pp. 617-623
Author(s):  
Zhi Gang Lan ◽  
Bao Rong Hou ◽  
Xiu Tong Wang

The progresses and theoretical methodology of computer modeling of cathodic protection using the boundary element method (BEM) are outlined. To test the effectiveness and accuracy of BEM numerical modeling of cathodic protection for offshore structures, a miniature model offshore jacket with a sacrificial anode was built and put in a test pool full of seawater. Cathodic protection potentials on different positions were measured and compared with the values obtained from computer modeling. The results show good agreement between measured value and numerical simulated value. The factors that led to discrepancy in the two groups of data were discussed.


Sign in / Sign up

Export Citation Format

Share Document