Effects of Tin on Aluminum – Zinc Alloy as Sacrificial Anode to Protect Underground Oil Pipeline in Al-Mahawil Regional

2012 ◽  
Vol 468-471 ◽  
pp. 1585-1594 ◽  
Author(s):  
Kadhim F. Al-Sultani ◽  
Jnan Nasser Nabat

Abstract Sacrificial anode cathodic protection is one of the most widely used methods in protecting buried oil pipe lines against the corrosion damages. In the present work, a series of Aluminum alloys have been prepared as sacrificial anodes candidates to be used in the protection of the oil pipelines that pass through the Al-Mahawil region. These prepared alloys were microstructurally and electrochemically characterized to evaluate their performance as Al-sacrificial anodes for cathodic protection of oil pipes The relationships between the protection potential with time, sacrificial anode life, discharge currents, and capacity of sacrificial anodes were found, taking into consideration the distance between sacrificial anode and protected steel sample. According to the results obtained, the best selection of sacrificial anodes was Al-4% Zn-0.4% Sn) alloy at 30cm in Al-Mahawil region.

2012 ◽  
Vol 628 ◽  
pp. 135-143
Author(s):  
Kadhim F. Al-Sultani ◽  
Jenan Nasser Nabat

Sacrificial anode cathodic protection is one of the most widely used methods in protecting buried oil pipe lines against the corrosion damages. In the present work, a series of Aluminum alloys have been prepared as sacrificial anodes candidates to be used in the protection of the oil pipelines that pass through the Al-Hilla region. These prepared alloys were microstructurally and electrochemically characterized to evaluate their performance as Al-sacrificial anodes for cathodic protection of oil pipes The relationships between the protection potential with time, sacrificial anode life, discharge currents, and capacity of sacrificial anodes were found, taking into consideration the distance between sacrificial anode and protected steel sample. According to the results obtained, the best selection of sacrificial anodes was (Al-4% Zn-0.5% Sn) alloy at 30cm in Al-Hilla region.


2011 ◽  
Vol 8 (1) ◽  
pp. 201-210
Author(s):  
R.M. Bogdanov

The problem of determining the repair sections of the main oil pipeline is solved, basing on the classification of images using distance functions and the clustering principle, The criteria characterizing the cluster are determined by certain given values, based on a comparison with which the defect is assigned to a given cluster, procedures for the redistribution of defects in cluster zones are provided, and the cluster zones parameters are being changed. Calculations are demonstrating the range of defect density variation depending on pipeline sections and the universal capabilities of linear objects configuration with arbitrary density, provided by cluster analysis.


2015 ◽  
Vol 1125 ◽  
pp. 345-349 ◽  
Author(s):  
Jin A Jeong

This study is to acquire the confirmation data regarding the cathodic protection characteristics for reinforced concrete beam specimens with zinc sacrificial anode in 15% salt water. It was possible to confirm the performance of sacrificial anode cathodic protection system by the measurement of potentials and concrete resistivity for the reinforced concrete beam specimens applied with zinc sacrificial anode in mortar topside of the concrete specimens. The corrosion potential and cathodic protection potential were measured by potentiostat, and 4 hour depolarization potentials were measured after disconnecting with anode for 4 hours. It was confirmed that the cathodic protection for reinforced concrete structures by means of zinc sacrificial anode were very effective corrosion protection technology in marine environments.


2013 ◽  
Vol 800 ◽  
pp. 365-374 ◽  
Author(s):  
Jin A Jeong ◽  
Chung Kuk Jin

In the present study, corrosion and cathodic protection (CP) characteristics of concrete piles exposed to marine environments such as marine bridge columns or pier structures were evaluated under simulated conditions. The accelerated environmental tests were carried out at an elevated temperature (40°C) and a high chloride concentration (15%). The protection potential of CP systems with Zn-mesh sacrificial anodes applied to piles was inversely proportional to the water content in the concrete. When the CP system was applied after corrosion initiation and propagation (CProt), the protection current density was higher than when the CP system was applied at the beginning of structural construction (CPrev). However, the four-hour depolarization potential was higher in the latter case than in the former. In addition, it was found that even though the current density of the CPrev system was relatively lower than that of the CProt system, the CPrev system was also able to prevent corrosion. Consequently, both CProt and CPrev systems are very effective at preserving reinforced concrete structures, especially in marine environments.


2014 ◽  
Vol 1015 ◽  
pp. 215-218
Author(s):  
Ya Ping Wang

In this work, the thermal spraying sacrificial anode was investigated as reinforced concrete structure cathodic protection method. During our experiment, the performance of the thermal spraying sacrificial anode was studied using electrochemical method, metallographic microscopy method and simulation tests. And the results show that the thermal spraying sacrificial anodes are better than traditional sacrificial anodes. The method of thermal spraying applied in sacrificial anode field is successful, which solve the problem of insufficient driving initial potential of traditional sacrificial anode in the concrete structure.


2011 ◽  
Vol 214 ◽  
pp. 296-300
Author(s):  
Yan Bin Huang ◽  
Gao Wei Song ◽  
Hua Dong Ding ◽  
Xue Bin Liu ◽  
Xin Hai Shao

The solubility and cathodic protection performance of Al-Zn-In-Mg-Ga-Mn sacrificial anode in natural corrosion and self-discharge experiment was studied using electrochemistry impedance spectrum technology, weight-loss measurement and SEM. The results show that the corrosion rate of 7A52 was decreased under the protection of sacrificial anodes in the self-discharge experiment, and sacrificial anodes dissolved uniformity due to the effect of active location, the corrosion products are easy to shed. Only location corrosion occurs on the sacrificial anode’s surface which is influenced by corrosion products and oxide film in natural corrosion experiment.


2021 ◽  
Author(s):  
Thierry Dequin ◽  
Clark Weldon ◽  
Matthew Hense

Abstract Flexible risers are regularly used to produce oil and gas in subsea production systems and by nature interconnect the subsea production system to the floating or fixed host facilities. Unbonded flexible pipes are made of a combination of metallic and non-metallic layers, each layer being individually terminated at each extremity by complex end fittings. Mostly submerged in seawater, the metallic parts require careful material selection and cathodic protection (CP) to survive the expected service life. Design engineers must determine whether the flexible pipe risers should be electrically connected to the host in order to receive cathodic protection current or be electrically isolated. If the host structure is equipped with a sacrificial anode system, then electrical continuity between the riser and the host structure is generally preferred. The exception is often when the riser and host structure are operated by separate organizations, in which case electrical isolation may be preferred simply to provide delineation of ownership between the two CP systems. The paper discusses these interface issues between hull and subsea where the hull is equipped with an impressed current cathodic protection (ICCP) system, and provides guidance for addressing them during flexible pipe CP design, operation, and monitoring. Specifically, CP design philosophies for flexible risers will be addressed with respect to manufacturing, installation and interface with the host structure’s Impressed Current Cathodic Protection (ICCP) system. The discussion will emphasize the importance of early coordination between the host structure ICCP system designers and the subsea SACP system designers, and will include recommendations for CP system computer modeling, CP system design operation and CP system monitoring. One of the challenges is to understand what to consider for the exposed surfaces in the flexible pipes and its multiple layers, and also the evaluation of the linear resistance of each riser segment. The linear resistance of the riser is a major determinant with respect to potential attenuation, which in turn largely determines the extent of current drain between the subsea sacrificial anode system and the hull ICCP system. To model the flexible riser CP system behavior for self-protection, linear resistance may be maximized, however the use of a realistic linear resistance is recommended for evaluation of the interaction between the host structure and subsea system. Realistic flexible linear resistance would also reduce conservatism in the CP design, potentially save time during the offshore campaign by reducing anode quantities, and also providing correct evaluation of drain current and stray currents.


Author(s):  
Марат Замирович Ямилев ◽  
Азат Маратович Масагутов ◽  
Александр Константинович Николаев ◽  
Владимир Викторович Пшенин ◽  
Наталья Алексеевна Зарипова ◽  
...  

Теплогидравлический расчет неизотермических трубопроводов является наиболее важным гидравлическим расчетом в рамках решения задач обеспечения надежности и безопасности работы нефтепроводной системы. Для практических расчетов применяются формулы Дарси - Вейсбаха и Лейбензона. При этом в ряде случаев (короткие теплоизолированные участки, поверхностный обогрев нефтепроводов) можно использовать упрощенный подход к расчету, пренебрегая изменением температуры или учитывая температурные поправки. В настоящее время формулы для аналитического расчета движения высоковязких нефтей в форме уравнения Лейбензона получены только для ньютоновской и вязкопластичной жидкостей. Для степенной жидкости соответствующие зависимости отсутствуют, расчет ведется с использованием формулы Дарси - Вейсбаха. Целью настоящей статьи является представление формулы Дарси - Вейсбаха для изотермических течений степенной жидкости в форме уравнения Лейбензона. Данное представление позволит упростить процедуру проведения аналитических выкладок. В результате получены модифицированные уравнения Лейбензона для определения потери напора на участке нефтепровода в диапазоне индекса течения от 0,5 до 1,25. В указанном диапазоне относительное отклонение от результатов расчетов с использованием классических формул Метцнера - Рида и Ирвина не превышает 2 %. The thermal-hydraulic calculation of non-isothermal pipelines is the most important hydraulic calculation in the framework of solving the problems of ensuring the reliability and safety of the oil pipeline system. For practical calculations, the Darcy - Weisbach and Leibenson formulas are used. Moreover, in a number of cases (short heat-insulated sections, surface heating of oil pipelines), a simplified approach to the calculation can be used, neglecting temperature changes or taking into account temperature corrections. At present, formulas for the analytical calculation of the motion of high-viscosity oils in the form of the Leibenson equation have been obtained only for Newtonian and viscoplastic fluids. For a power-law fluid, there are no corresponding dependences; the calculation is carried out using the Darcy - Weisbach formula. The purpose of this article is to present the Darcy - Weisbach formula for isothermal flows of a power-law fluid in the Leibenzon form, which will simplify the procedure for performing analytical calculations. The modified Leibenzon equations are obtained to determine the head loss in the oil pipeline section in the range of the flow index from 0.5 to 1.25. In the specified range, the relative deviation from the results of calculations using the classical Metzner - Reed and Irwin formulas does not exceed 2 %.


Sign in / Sign up

Export Citation Format

Share Document