Numerical Model for Prediction of Cutting Force in Peripheral Milling Process Including Thrust and Tangential Damping

2011 ◽  
Vol 223 ◽  
pp. 122-132
Author(s):  
Kamel Mehdi ◽  
Ali Zghal

A numerical model for prediction of cutting force components in peripheral milling process, including the cutting process damping, is proposed. The cutting process damping creates two components (thrust and tangential) of a dynamic cutting force. The total force model is obtained through numerical integration of the local forces. The effects of tool parameters (diameter, helix angle, number of teeth) on process damping and cutting force distributions are discussed. It is shown that the average value of the process damping and the amplitude of the cutting force increase with increasing the tool diameter. On the other hand, when the tool helix angle increases the process damping increases and the cutting force decreases. The number of tool teeth’s has not an influence on the variation of the damping process and cutting force but an influence on the number of cycles of the periodic cutting process.

Author(s):  
C. Y. Huang ◽  
J.-J. Junz Wang

This paper extends analytical modeling of the milling process to include process damping effects. Two cutting mechanisms (shearing and plowing mechanisms) and two process damping effects (directional and magnitude effects) are included. The directional effect is related to vibration energy dissipation due to directional variation of cutter/workpiece relative motion. The magnitude effect is associated with change in force magnitude due to variation of rake angle and clearance angle. Process damping is summarized as containing these separate components; direction-shearing, direction-plowing, magnitude-shearing and magnitude-plowing. The total force model including the process damping effect is obtained through convolution integration of the local forces. The analytical nature of this model makes it possible to determine unknown process damping coefficients from measured vibration signal during milling. The effects of cutting conditions (cutting speed, feed, axial and radial depths of cut) on process damping are systematically examined. It is shown that total process damping increases with increasing feed, axial and radial depths of cut, but decreases with increasing cutting velocity. Predictions based on the analytical model are verified by experiment. Results show that plowing mechanism contributes more to the total damping effect than the shearing mechanism, and magnitude-plowing effect has by far the greatest influence on total damping.


2014 ◽  
Vol 887-888 ◽  
pp. 1200-1204 ◽  
Author(s):  
Te Ching Hsiao ◽  
Shyh Chour Huang

In the milling process, the dynamic system in the cutting process is composed of the tool, workpiece, and machine tools themselves. Therefore the mill geometric parameter, workpiece material behavior, and the modal parameters of the cutting system all will influence the stability in milling. Using FLN method and convolution force model to predict the chatter stability of milling process, and discussing the effect of milling parameter on the stability in this article. According to the result: with the increase of the tool diameter, stiffness, damping ratio or the reducing of tangential cutting force coefficient and radial width of cut, the stability lobe diagram tends to move upward. With the increase of natural frequency, the stability lobe diagram tends to move to right side. With the increase of the number of tooth, the stability lobe diagram tends to move downward.


Author(s):  
R. Curti ◽  
B. Marcon ◽  
L. Denaud ◽  
M. Togni ◽  
R. Furferi ◽  
...  

AbstractThe influence of the grain angle on the cutting force when milling wood is not yet detailed, apart from particular cases (end-grain, parallel to the grain, or in some rare cases 45°-cut). Thus, setting-up wood machining operations with complex paths still relies mainly on the experience of the operators because of the lack of scientific knowledge easily transferable to the industry. The aim of the present work is to propose an empirical model based on specific cutting coefficients for the assessment of cutting force when peripheral milling of wood based on the following input: uncut chip thickness and width, grain angle (angle between the tool velocity vector and the grain direction of the wood), density and tool helix angle. The specific cutting coefficients were determined by peripheral milling with different depths of cut wood disks issued from different wood species on a dynamometric platform to record the forces. Milling a sample into a round shape (a disk) allows to measure the cutting forces toward every grain angle into a sole basic diameter reduction operation. Force signals are then post-processed to carefully clean the natural vibrations of the system without impacting their magnitudes. The experiment is repeated on five species with a large range of densities, machining two disks per species for five depths of cut in up- and down milling conditions for three different tool helix angles. Finally, a simple cutting force model, based on the previously cited parameters, is proposed, and its robustness analysed.


2006 ◽  
Vol 129 (1) ◽  
pp. 12-20 ◽  
Author(s):  
C. Y. Huang ◽  
J. J. Junz Wang

This paper extends analytical modeling of the milling process to include process damping effects. Two cutting mechanisms (shearing and plowing mechanisms) and two process damping effects (directional and magnitude effects) are included. The directional effect is related to vibration energy dissipation due to directional variation of cutter∕workpiece relative motion. The magnitude effect is associated with change in force magnitude due to variation of rake angle and clearance angle. Process damping is summarized as containing these separate components: direction-shearing, direction-plowing, magnitude-shearing, and magnitude-plowing. The total force model including the process damping effect is obtained through convolution integration of the local forces. The analytical nature of this model makes it possible to determine two unknown dynamic cutting factors from measured vibration signal during milling. The effects of cutting conditions (cutting speed, feed, axial and radial depths of cut) on process damping are systematically examined. It is shown that total process damping increases with increasing feed, axial and radial depths of cut, but decreases with increasing cutting velocity. Predictions based on the analytical model are verified by experiment. Results show that plowing mechanism contributes more to the total damping effect than the shearing mechanism, and magnitude-plowing effect has by far the greatest influence on total damping.


2013 ◽  
Vol 773-774 ◽  
pp. 370-376
Author(s):  
Muhammad Adib Shaharun ◽  
Ahmad Razlan Yusoff ◽  
Mohammad S. Reza

Titanium is difficult-to-cut materials due to its poor machinability and thermal conductivity when machining at high cutting speed. To overcome this machining titanium alloy problem, this study in interaction between machining structural system and the cutting process are very important. One of the main problems in the cutting process is chatter vibration. Due to chatter problem, the mechanism to suppress chatter named, process damping is a useful method can be manipulated to improve the limited productivity of titanium machining at low speed machining in milling process. In the present study, experiment are conducted to evaluate and study the process damping mechanism in milling using different types of variable tools geometries. These tools are variable he-lix/uniform pitch, variable pitch/uniform helix and variable helix and pitch and uniform helix/pitch. The result showed that the variable helix and pitch tools is very significantly improve process damping performance in machining titanium alloy compare to traditional of regular tools and other irregular tools.


2011 ◽  
Vol 121-126 ◽  
pp. 2059-2063 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Angsumalin Senjuntichai

In order to realize the intelligent machines, the practical model is proposed to predict the in-process surface roughness during the ball-end milling process by utilizing the cutting force ratio. The ratio of cutting force is proposed to be generalized and non-scaled to estimate the surface roughness regardless of the cutting conditions. The proposed in-process surface roughness model is developed based on the experimentally obtained data by employing the exponential function with five factors of the spindle speed, the feed rate, the tool diameter, the depth of cut, and the cutting force ratio. The prediction accuracy and the prediction interval of the in-process surface roughness model at 95% confident level are calculated and proposed to predict the distribution of individually predicted points in which the in-process predicted surface roughness will fall. All those parameters have their own characteristics to the arithmetic surface roughness and the surface roughness. It is proved by the cutting tests that the proposed and developed in-process surface roughness model can be used to predict the in-process surface roughness by utilizing the cutting force ratio with the highly acceptable prediction accuracy.


Author(s):  
Norikazu Suzuki ◽  
Tomoki Nakanomiya ◽  
Eiji Shamoto

Abstract This paper presents a new approach to predict chatter stability in cutting considering process damping. Traditional chatter stability analysis methods enable to predict stable or unstable conditions. Under unstable conditions, the chatter vibration can increase theoretically infinitely. However, chatter vibration is damped at a certain amplitude in real process due to process damping, i.e., the cutting process is stabilized by means of tool flank face contact to the machined surface. In order to consider the influence of the process damping, a simple process damping force model is introduced. The process damping force is assumed to be proportional to the structural displacement. The process damping coefficient is a function of the vibration amplitude and the wavelength. In order to identify the coefficients, a series of finite element analysis is conducted in the present study. Identified coefficients are introduced into the conventional zero-order-solution in frequency domain. The proposed model calculates chatter stability limit assuming process damping with finite amplitude. Hence, this analysis enables to estimate the amplitude-dependent quasi-stable conditions. Analytical results for thee face turning operation demonstrated influence of process damping effect on resultant vibration amplitude quantitatively.


Author(s):  
Caixu Yue ◽  
Xianli Liu ◽  
Yunpeng Ding ◽  
Steven Y Liang

Tool deflection induced by cutting force could result in dimensional inaccuracies or profile error in corner milling process. Error compensation has been proved to be an effective method to get accuracy component in milling process. This article presents a methodology to compensate profile errors by modifying tool path. The compensation effect strongly depends on accuracy of the cutting force model used. The mathematical expression of chip thickness is proposed based on the true track of cutting edge for corner milling process, which considers the effect of tool deflection. The deflection of tool is calculated by finite element method. Then, an off-line compensation algorithm for corner profile error is developed. Following the theoretical analysis, the effect of the error compensation algorithm is verified by experimental study. The outcome provides useful comprehension about selection of process conditions for corner milling process.


Author(s):  
Xuewei Zhang ◽  
Tianbiao Yu ◽  
Wanshan Wang

An accurate prediction of cutting forces in the micro end milling, which is affected by many factors, is the basis for increasing the machining productivity and selecting optimal cutting parameters. This paper develops a dynamic cutting force model in the micro end milling taking into account tool vibrations and run-out. The influence of tool run-out is integrated with the trochoidal trajectory of tooth and the size effect of cutting edge radius into the static undeformed chip thickness. Meanwhile, the real-time tool vibrations are obtained from differential motion equations with the measured modal parameters, in which the process damping effect is superposed as feedback on the undeformed chip thickness. The proposed dynamic cutting force model has been experimentally validated in the micro end milling process of the Al6061 workpiece. The tool run-out parameters and cutting forces coefficients can be identified on the basis of the measured cutting forces. Compared with the traditional model without tool vibrations and run-out, the predicted and measured cutting forces in the micro end milling process show closer agreement when considering tool vibrations and run-out.


Sign in / Sign up

Export Citation Format

Share Document