Research on Main Control Factors of Coalbed Methane Reservoir Formation in Turpan-Hami Basin

2011 ◽  
Vol 233-235 ◽  
pp. 2201-2204 ◽  
Author(s):  
Gui Zhong Li ◽  
Hong Yan Xu ◽  
Bo Wang ◽  
Ze Deng ◽  
Meng Geng

Turpan-Hami Basin is a typical low coal rank coal bearing basin in China, with coal resources accounting for 50% of the total low coal rank resources. Structural evolution of the basin plays important controlling roles to generation;Fan delta and braided delta deposit systems are thick and stable sedimentary systems which are favorable for coal beds development;Hydrogeological condition is a major force for the adjustment and construction of coal-bed gas reservoirs.

Geophysics ◽  
2013 ◽  
Vol 78 (4) ◽  
pp. D237-D248 ◽  
Author(s):  
Xin-Ping Chen ◽  
Quanming Huo ◽  
Jiandong Lin ◽  
Yang Wang ◽  
Fenjin Sun ◽  
...  

We investigated three coal-bed methane (CBM) reservoirs in which there exist, when we are careful about data quality and reduce environmental variations, inverse correlations between methane content and the elastic properties of the coal beds. Such inverse correlations may exist in general in high- and medium-rank CBM reservoirs. There is evidence that supports the generalization of such inverse correlations and factors that distort them. These distorting factors may prevent identification of such inverse correlations in certain CBM prospects; however, they cannot negate the underlying inverse correlations. Such inverse correlations may play a role in CBM amplitude versus offset (AVO) similar to the role played by Gassmann-Biot theory ( Gassmann, 1951 ; Biot, 1956 , 1962 ) in AVO technology for conventional gas reservoirs. This may lay the first brick for a theoretical basis of CBM AVO.


2021 ◽  
Author(s):  
Makpal Bektybayeva ◽  
Nurhat Mendybaev ◽  
Asfandiyar Bigeldiyev ◽  
Subhro Basu ◽  
Auez Abetov ◽  
...  

Abstract For accurate coal bed methane (CBM) reserves estimation, it is necessary to evaluate reservoir characteristics. We present a workflow for formation evaluation of coalbed-methane wells, by interpretation of a limited number of legacy logs, including data preprocessing, lithology identification, proximate analysis and estimation of gas content of coal beds. This workflow allowed the estimation of ash content from the available logs, including selective log (analogue of photoelectric absorption), which was recorded only on the territory of the former Soviet Union and never used for such calculations before. Even though the logs were recorded by old tools with low vertical resolution, we were able to identify heterogeneity of coal seams, using the principle of core ash content distribution. Integrated analysis of old core data and recent laboratory measurements of samples from coal pillars allowed to calculate proximate properties of the coal, which showed good match with observed data and could be considered as input parameters for property distribution in the geological model. Also, it is worth to mention that an advanced plug-in was deployed to perform calculation of proximate properties and gas content for all available options and to significantly reduce time for screening different algorithms and rapidly analyzing results.


PETRO ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 131
Author(s):  
Yusraida Khairani Dalimunthe ◽  
Def Marshal ◽  
Ratnayu Sitaresmi

<em>The Coal Bed Methane well X is a field developed by company A where 5 CBM test wells have been drilled. This CBM field development in 2004 by drilling wells to a depth of 3000ft, then in 2006 drilling was carried out for three test wells with an average depth of 3000ft. The research conducted at LEMIGAS aims to calculate coalbed methane reservoir reserves, calculation of reserves per seam, recovery factor, from each coal sample. The volumetric method is used in this research to calculate the methane gas reserves and Langmuir curve analysis is used to calculate the recovery factor. The target of this research is the CBM field in well X, where the well has 3 seams, namely seam-2, seam-3, and seam-4. In addition to calculating the value of methane gas reserves for each well, the methane gas reserves for each seam are also calculated. From the results of the calculation, it can be concluded that the largest value of gas in place is on seam 4 which is 573.2 MMscf and the smallest is on seam 2 which is 176.1 MMscf, then the largest recovery factor value is owned by seam 3 which is 91%.</em>


1977 ◽  
Vol 99 (4) ◽  
pp. 624-626 ◽  
Author(s):  
F. T. C. Ting

Cleats are natural fractures in coal beds resulting from dehydration, devolatilization, and stresses in the earth’s upper crust during coalification. The orientation of these fractures usually parallels that of the fractures (joints) in the associated rocks except that the former is better developed. Spacing of cleats ranges from less than one millimeter to over one meter. The frequency of cleating in coal beds affects not only mining but also the flow of gases in the coal, and the strength of pillars used for roof support. The variation in spacing in controlled primarily by two parameters, namely rank and petrographic composition of the coal. The cleat frequency increases with increasing rank and reaches a maximum at the low-volatile bituminous coal rank. Within the same coal bed at the same mine face, dull coal layers tend to have fewer cleats than bright coal layers. The nature of the cleats is further complicated by local disturbances such as faults, folds, and fissility of bedding planes in the coal seams.


Clay Minerals ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 555-565 ◽  
Author(s):  
K. Ziegler ◽  
B. W. Sellwood ◽  
A. E. Fallick

AbstractAeolian sandstones of the Lower Permian Leman Formation (Rotliegend Group) provide the best gas reservoir in the southern North Sea, but permeability is greatly reduced by the presence of authigenic fibrous illites. New radiogenic (K/Ar) and stable (oxygen and hydrogen) isotope data are presented for fibrous illite cements (<0.1 µm), so that the absolute timing and controlling diagenetic factors for their formation can be more fully evaluated. Thus, the expected quality of gas reservoirs in the southern North Sea might be better predicted. Samples have been analysed from five wells in areas with contrasting structural evolution: the Sole Pit Basin, and the Indefatigable Shelf. The K/Ar ages of between 160 and 190 Ma have been obtained from the Indefatigable Shelf illites, and between 120 and 160 Ma for those from the Sole Pit Basin, reflecting different times of basin inversion. These K/Ar ages are interpreted by reference to burial/thermal models for each well. The temperature of illite precipitation falls between 88 and 140°C. Calculated pore-fluid compositions derived from oxygen and hydrogen isotopic analyses give values of ∼ + 1 to +9‰ (SMOW) δ18O and +1 to −50‰ (SMOW) δD. The illite δD values have probably been affected by isotopic exchange and fractionation with the surrounding gaseous hydrocarbon. The δ18O values reflect the degree to which evaporative concentration had affected Zechstein marine waters which subsequently invaded the Leman Sandstone. Comparisons between δ18O and δD values in clays and in formation water for the Leman Field suggest that oxygen isotope exchange might have taken place, and that the initial K+ and radiogenic 40Ar contents within illites may have been modified.


Geophysics ◽  
2008 ◽  
Vol 73 (3) ◽  
pp. B77-B84 ◽  
Author(s):  
Brian A. Lipinski ◽  
James I. Sams ◽  
Bruce D. Smith ◽  
William Harbert

Production of methane from thick, extensive coal beds in the Powder River Basin of Wyoming has created water management issues. Since development began in 1997, more than 650 billion liters of water have been produced from approximately 22,000 wells. Infiltration impoundments are used widely to dispose of by-product water from coal bed natural gas (CBNG) production, but their hydrogeologic effects are poorly understood. Helicopter electromagnetic surveys (HEM) were completed in July 2003 and July 2004 to characterize the hydrogeology of an alluvial aquifer along the Powder River. The aquifer is receiving CBNG produced water discharge from infiltration impoundments. HEM data were subjected to Occam’s inversion algorithms to determine the aquifer bulk conductivity, which was then correlated towater salinity using site-specific sampling results. The HEM data provided high-resolution images of salinity levels in the aquifer, a result not attainable using traditional sampling methods. Interpretation of these images reveals clearly the produced water influence on aquifer water quality. Potential shortfalls to this method occur where there is no significant contrast in aquifer salinity and infiltrating produced water salinity and where there might be significant changes in aquifer lithology. Despite these limitations, airborne geophysical methods can provide a broadscale (watershed-scale) tool to evaluate CBNG water disposal, especially in areas where field-based investigations are logistically prohibitive. This research has implications for design and location strategies of future CBNG water surface disposal facilities within the Powder River Basin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Manzar Fawad ◽  
Nazmul Haque Mondol

AbstractGeological CO2 storage can be employed to reduce greenhouse gas emissions to the atmosphere. Depleted oil and gas reservoirs, deep saline aquifers, and coal beds are considered to be viable subsurface CO2 storage options. Remote monitoring is essential for observing CO2 plume migration and potential leak detection during and after injection. Leak detection is probably the main risk, though overall monitoring for the plume boundaries and verification of stored volumes are also necessary. There are many effective remote CO2 monitoring techniques with various benefits and limitations. We suggest a new approach using a combination of repeated seismic and electromagnetic surveys to delineate CO2 plume and estimate the gas saturation in a saline reservoir during the lifetime of a storage site. This study deals with the CO2 plume delineation and saturation estimation using a combination of seismic and electromagnetic or controlled-source electromagnetic (EM/CSEM) synthetic data. We assumed two scenarios over a period of 40 years; Case 1 was modeled assuming both seismic and EM repeated surveys were acquired, whereas, in Case 2, repeated EM surveys were taken with only before injection (baseline) 3D seismic data available. Our results show that monitoring the CO2 plume in terms of extent and saturation is possible both by (i) using a repeated seismic and electromagnetic, and (ii) using a baseline seismic in combination with repeated electromagnetic data. Due to the nature of the seismic and EM techniques, spatial coverage from the reservoir's base to the surface makes it possible to detect the CO2 plume’s lateral and vertical migration. However, the CSEM low resolution and depth uncertainties are some limitations that need consideration. These results also have implications for monitoring oil production—especially with water flooding, hydrocarbon exploration, and freshwater aquifer identification.


2009 ◽  
Vol 19 (4) ◽  
pp. 435-440 ◽  
Author(s):  
Bo WANG ◽  
Bo JIANG ◽  
Lei LIU ◽  
Gui-qiang ZHENG ◽  
Yong QIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document