Research on Conditions of Solid-State Fermentation and Characters of Tannase by Aspergillus Niger B0201 with Gallnut

2011 ◽  
Vol 236-238 ◽  
pp. 1029-1038
Author(s):  
Xin Ying Wu ◽  
Shu Yi Qiu ◽  
Yang Zhen Li ◽  
Yu Xin Bao

Study is on the solid-state fermentation of tannase with the Gallnut by Aspergillus niger B-0201.The experiments involved in the process and conditions of solid-state fermentation and factors influencing characters of tannase. The results indicated that the unpasteurized method before fermentation was in favor of the higher enzymic activity than the sterilized method. With the unpasteurized method, the tannase activity got the best level(51.2U/gds) ,when 5.0g of culture medium containing the 1g of Gallnut powder, 4g of the bran powder, 1% (w/w) of (NH4)2SO4, 0.1%(w/w) of NaCl, 0.1%(w/w) of MgSO4·7H2O, 8ml of water, 1.6:1 of the solid-to-liquid ratio and 1ml(1×108spores per milliliter)of inoculum size to a 250 ml conical flask was incubated at 30°C, initial pH6.0 for 96 hours. At the same time, the conditions of fermentation were further optimized using the Response Surface Design(RSM). The tannase activity got at 56.2U/gds with the .Gallnut(17%,w/w) and the solid-to-liquid ratio(1.5:1) in the medium under 32°C. The optimum temperature and pH of tannase was respectively 40°C and 5.0. Fe3+,Cu2+,Fe2+, Ba2+,Mn2+,Ca2+,Al3+were the inhibitor of tannase at 2.0mM concentration. The optimum concentration of propylgallate as the substrate catalyzed by Tannase was 1mM. The value of Kmwas 0.514mM and Vmaxwas 71.8μmol·(L·min)-1.

2021 ◽  
Vol 27 (2) ◽  
pp. 93-105
Author(s):  
M. R. Adedayo ◽  
M. T Mohammed ◽  
A. E. Ajiboye ◽  
S. A Abdulmumini

The present study was aimed at studying pectinolytic activity of resident fungi isolated from decomposing grapefruit (Citrus parasidis) peels in solid state fermentation. Grape fruit peel was subjected to natural fermentation and the fermenting fungi were isolated, characterized and identified using standard microbiological methods. The isolated fungi were in turn used for fermentation to determine their pectinolytic activity through solid state fermentation technique. Culture parameters such as incubation period, temperature, moisture content and addition of salts supplements were optimized during the research for five days. The identified fungi were Aspergillus Niger and Aspergillus flavus. The peak of pectinolytic activity was at day three of fermentation when the highest pectinase activity of 13.32 μmol/mg/min was recorded for A. Niger and 11.32 μmol/mg/min for A. flavus. Optimum temperature and pH for pectinase activity by A. Niger and A. flavus was at 40 0C and pH 7.5 and 7.7 respectively. The use of salt supplemented substrate did not alter enzyme activity. In conclusion, the isolated fungi could be promising organisms for pectinolytic enzyme production on grape peel as substrate. Keywords: Grapefruit, Pectinolytic Activity, Fungi, Fermentation, Aspergillus


2021 ◽  
Vol 11 (6) ◽  
pp. 14809-14824

Proteases, also known as proteinases or proteolytic enzymes, belong to a group of hydrolases. It can be applied in numerous fields and industries. Solid-state fermentation (SSF) is recognized as an effective method to produce protease. The ultimate aim of this study is to optimize the production of protease from Aspergillus niger under solid-state fermentation (SSF) by utilizing shrimp shell powder as a solid substrate. It was found that the produced protease from SSF was slightly alkaline. The correlation between factors operating parameters (incubation temperature, inoculum size, moisture content) for enzyme production is analyzed using statistical software, Minitab 16. A 23 full factorial experimental design was employed, and the enzyme produced was optimized by the method of desirability function. The optimal conditions for protease production of 3.7 U/mg were 35 °C of incubation temperature, 60% of initial moisture content, and 1.0 inoculum size. It is concluded that SSF protease was successfully produced from Aspergillus niger by utilizing shrimp waste as substrate. Through optimization study, moisture content, the interaction between incubation temperature and moisture content, interaction between moisture content and inoculum size significantly impact protease production.


2013 ◽  
Vol 781-784 ◽  
pp. 836-839
Author(s):  
Xiu Li Qin ◽  
Li Hui Zhao

In this paper, the condition of aspergillus niger and the bacillus subtilis mixing fermentation to produce soybean peptides was studied. The results indicated that the best fermentation condition of the aspergillus niger and the bacillus subtilis mixing fermentation to produce soybean peptides is that: the initial pH of the culture medium is 8.0, the proportion of mixture strains (aspergillus niger vs bacillus subtilis) is 2 to 1,the fermentation temperature is 30°C and the fermentation time is 80 hours. In this condition the degree of hydrolysis of the fermentation bean pulp is 36.5%.


2021 ◽  
Vol 9 (5) ◽  
pp. 895
Author(s):  
Carlotta Alias ◽  
Daniela Bulgari ◽  
Fabjola Bilo ◽  
Laura Borgese ◽  
Alessandra Gianoncelli ◽  
...  

A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This “green” process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste.


2011 ◽  
Vol 54 (3) ◽  
pp. 559-568 ◽  
Author(s):  
Christiane Trevisan Slivinski ◽  
Alex Vinicius Lopes Machado ◽  
Jorge Iulek ◽  
Ricardo Antônio Ayub ◽  
Mareci Mendes de Almeida

BioResources ◽  
2014 ◽  
Vol 9 (4) ◽  
Author(s):  
Valesca Weingartner Montibeller ◽  
Luciana Porto de Souza Vandenberghe ◽  
Antonella Amore ◽  
Carlos Ricardo Soccol ◽  
Leila Birolo ◽  
...  

2016 ◽  
Vol 29 (1) ◽  
pp. 222-233 ◽  
Author(s):  
TAMIRES CARVALHO DOS SANTOS ◽  
GEORGE ABREU FILHO ◽  
AILA RIANY DE BRITO ◽  
AURELIANO JOSÉ VIEIRA PIRES ◽  
RENATA CRISTINA FERREIRA BONOMO ◽  
...  

ABSTRACT: Prickly palm cactus husk was used as a solid-state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box-Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp. Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.


Author(s):  
MARIA ALICE ZARUR COELHO ◽  
SELMA GOMES FERREIRA LEITE ◽  
MORSYLEIDE DE FREITAS ROSA ◽  
ANGELA APARECIDA LEMOS FURTADO

Investigou-se o aproveitamento da casca do coco verde, mediante fermentação semisólida, para produção de enzimas. A casca de coco foi previamente desidratada, moída e classificada em três diferentes granulometrias, ou seja, 14, 28 e 32 mesh Tyler. Todas as enzimas obtidas tiveram sua produção máxima na faixa de 24 e 96 horas, o que corresponde ao tempo de produção industrial corrente. Cada granulometria produziu complexos enzimáticos ricos em diferentes atividades. O estudo realizado validou a hipótese do aproveitamento do resíduo da casca do coco verde na produção de enzimas por Aspergillus niger. Abstract The utilization of immature coconut peel as substrate for enzyme production by solid state fermentation was investigated. The coconut peel was previously dehydrated, milled and classified in three distinct granulometries: 14, 28 and 32 mesh Tyler. All the enzymes obtained had its maximum production in 24 to 96 hour interval, which correspond to the current industrial production time. Each granulometry produced rich enzymatic complexes with different activities. This study validates the hypothesis of benefit immature coconut peel as raw material for enzyme production by Aspergillus niger.


Sign in / Sign up

Export Citation Format

Share Document