The Tip Field of Mode III Crack in Damage Material

2011 ◽  
Vol 236-238 ◽  
pp. 2790-2793
Author(s):  
Xiu Hong Wang ◽  
Bo Liu ◽  
Li Qiang Tang

The research of crack-tip field in damage materials is a very complex problem. The core question is how to give the damage constitutive equation and determine the crack tip singularity order of magnitude of the physical quantities. Taking into account the damage process is a process which the energy (strain) accumulates, and the initial damage threshold value existence, on the Lemaitre’s research foundation, the brittle material damage constitutive equation that has the initial damage quantity and the power order relationship with strain is given. Under the assumption that stress (strain) is finite, the construction of III mode crack tip damage fields is studied and the solution of crack-tip stress (strain) asymptotic field is given. Finally, the relationship of the initial crack tip damage zone and full damage zone Scale and material parameters are discusses. These works provide theoretical basis for the material engineering design and the appraisal structure reliability.

2010 ◽  
Vol 78 (1) ◽  
Author(s):  
Linhui Zhang ◽  
Jeong-Ho Kim

This paper provides full asymptotic crack-tip field solutions for an antiplane (mode-III) stationary crack in a functionally graded material. We use the complex variable approach and an asymptotic scaling factor to provide an efficient procedure for solving standard and perturbed Laplace equations associated with antiplane fracture in a graded material. We present the out-of-plane displacement and the shear stress solutions for a crack in exponentially and linearly graded materials by considering the gradation of the shear modulus either parallel or perpendicular to the crack. We discuss the characteristics of the asymptotic solutions for a graded material in comparison with the homogeneous solutions. We address the effects of the mode-III stress intensity factor and the antiplane T-stress onto crack-tip field solutions. Finally, engineering significance of the present work is discussed.


2020 ◽  
Author(s):  
Takahiro Matsuda ◽  
Runa Kawakami ◽  
Tasuku Nakajima ◽  
Jian Ping Gong

Quantitative characterization of the energy dissipative zone around the crack tip is the central issue in fracture mechanics of soft materials. In this research, we present a mechanochemical technique to visualize the bond scission of the first network in the damage zone of tough double-network hydrogels. The mechanoradicals generated by polymer chain scission are employed to initiate polymerization of a thermoresponsive polymer, which is visualized by a fluorophore. This technique records the spatial distribution of internal fracturing from the fractured surface to the bulk, which provides the spatial profiles of stress, strain, and energy dissipation around the crack-tip. The characterized results suggest that, in addition to the dissipation in relatively narrow yielded zone which is mostly focused in the previous works, the dissipation in wide pre-yielding zone and the intrinsic fracture energy have also significant contribution to the fracture energy of a DN gel.


2020 ◽  
Author(s):  
Takahiro Matsuda ◽  
Runa Kawakami ◽  
Tasuku Nakajima ◽  
Jian Ping Gong

Quantitative characterization of the energy dissipative zone around the crack tip is the central issue in fracture mechanics of soft materials. In this research, we present a mechanochemical technique to visualize the bond scission of the first network in the damage zone of tough double-network hydrogels. The mechanoradicals generated by polymer chain scission are employed to initiate polymerization of a thermoresponsive polymer, which is visualized by a fluorophore. This technique records the spatial distribution of internal fracturing from the fractured surface to the bulk, which provides the spatial profiles of stress, strain, and energy dissipation around the crack-tip. The characterized results suggest that, in addition to the dissipation in relatively narrow yielded zone which is mostly focused in the previous works, the dissipation in wide pre-yielding zone and the intrinsic fracture energy have also significant contribution to the fracture energy of a DN gel.


2010 ◽  
Vol 452-453 ◽  
pp. 349-352 ◽  
Author(s):  
Xiang Dong Wang ◽  
Ai Min Deng ◽  
Wei Xuan Zhu ◽  
Yue Feng Wang ◽  
Fang Chao Liu

The bearing capacity decreases continuously along with the deterioration of material property under the action of external effects. It is important to evaluate the damage of concrete, and the damage parameter plays an important role in this process. An experimentation method has been designed, which can simulate the initial damage by mixed initiator into concrete. Using the elastic modulus of axial compression experimentation, the initial damage D0 and damage threshold value Df have been gained. The Size effect of concrete compress damage parameters is verified.


2005 ◽  
Vol 297-300 ◽  
pp. 1019-1024
Author(s):  
Mitsugu Todo ◽  
Yoshihiro Fukuya ◽  
Seiya Hagihara ◽  
Kazuo Arakawa

Microscopic studies on the toughening mechanism of rubber-toughened PMMA (RTPMMA) were carried out using a polarizing optical microscope (POM) and a transmission electron microscope (TEM). POM result showed that in a typical RT-PMMA, a damage zone was developed in the vicinity of crack-tip, and therefore, it was considered that energy dissipation due to the damage zone development was the primary toughening mechanism. TEM result exhibited that the damage zone was a crowd of micro-crazes generated around rubber particles in the vicinity of notch-tip. Finite element analysis was then performed to simulate such damage formations in crack-tip region. Macro-scale and micro-scale models were developed to simulate damage zone formation and micro-crazing, respectively, with use of a damage model. It was shown that the damage model introduced was successfully applied to predict such kind of macro-damage and micro-craze formations.


2016 ◽  
Vol 853 ◽  
pp. 281-285
Author(s):  
Jun Hui Zhang ◽  
Yan Wei Dai

Creep crack within weldments are very common in engineering practices, and the cracking location in these welding structures always appears at the HAZ location. The mismatch effect on the mixed mode creep crack is still not clear in these available literatures. The aim of this paper is to investigate the mismatch influence on the creep crack of mixed mode thoroughly. A mixed mode creep crack within HAZ is established in this paper. The leading factor that dominates the creep crack tip field under mixed loading mode is studied. The influences of mismatch effect on mode mixity, stress distribution and stress triaxiality are proposed. The difference of mixed mode creep crack and normal mode I or mode II creep crack are compared. The influence of mixity factor on the transient and steady state creep of crack tip are also analyzed.


Author(s):  
Yuji Ozawa ◽  
Tatsuya Ishikawa ◽  
Yoichi Takeda

In order to clarify the mechanism of fatigue crack growth in alloy 625, which is a candidate material for use in advanced ultra supercritical power plants, the crack tip damage zone formation after a crack growth test conducted in high temperature steam was investigated. It was observed that the oxide thickness at the crack tip tended to increase with decreasing cyclic loading frequency. The crack path was a mix of transgranular and intergranular fractures. According to the grain reference orientation deviation (GROD) maps, it was revealed that the density of geometrically necessary dislocations (GNDs) in the matrix along the crack path and ahead of crack tip increased with an increase in the fatigue crack growth rate (FCGR) due to environmental effects. It was observed that (1) mobile dislocations at the crack surface were blocked due to the thick oxide layer, resulting in an increase in the density of GNDs, and (2) an increase in the density of GNDs might induce stress concentration at the crack tip, deformation twinning, and the acceleration of FCGRs.


1988 ◽  
Vol 49 (C3) ◽  
pp. C3-307-C3-312
Author(s):  
K. KUSSMAUL ◽  
T. DEMLER ◽  
A. KLENK

Sign in / Sign up

Export Citation Format

Share Document