Detection of XinyangMaojian Green Tea Quality and Age by Electronic Nose

2011 ◽  
Vol 239-242 ◽  
pp. 2096-2100 ◽  
Author(s):  
Hong Mei Zhang ◽  
Ming Xun Chang ◽  
Yong Chang Yu ◽  
Hui Tian ◽  
Yu Qing He ◽  
...  

In this work, the capacity of an electronic nose (E-nose, PEN2) to classify tea quality grades is investigated. Three tea groups with different quality grades were harvested at different times. Principal component analysis (PCA) and artificial neural network (ANN) were applied to identify the different tea samples. PCA provided perfect classification of tea quality grades. In the analysis of age, six groups of XinyangMaojian green tea were distinguished completely by PCA. The results of ANN analysis gave a high percentage of correct discrimination of green tea samples. The correct identification rates of the training and testing data were 98.6% and 83%, respectively, for three grades of green tea samples harvested in 2009. The correct identification rates of the training and testing data were 100% and 87.8%, respectively, for three grades of green tea samples harvested in 2010. In the analysis of age, the correct discrimination percentages for six groups of XinyangMaojian green tea were 99.4% and 88.9% for training and testing data, respectively. These results indicate that the electronic nose could be successfully used for the detection of teas of different quality grades and ages.

Sensors ◽  
2010 ◽  
Vol 10 (5) ◽  
pp. 4675-4685 ◽  
Author(s):  
Wahyu Hidayat ◽  
Ali Yeon Md. Shakaff ◽  
Mohd Noor Ahmad ◽  
Abdul Hamid Adom

Presently, the quality assurance of agarwood oil is performed by sensory panels which has significant drawbacks in terms of objectivity and repeatability. In this paper, it is shown how an electronic nose (e-nose) may be successfully utilised for the classification of agarwood oil. Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA), were used to classify different types of oil. The HCA produced a dendrogram showing the separation of e-nose data into three different groups of oils. The PCA scatter plot revealed a distinct separation between the three groups. An Artificial Neural Network (ANN) was used for a better prediction of unknown samples.


Author(s):  
Inca Inca ◽  
Triyogatama Wahyu Widodo ◽  
Danang Lelono

This research aims to classification of samples of green tea and black tea originated from different planting sites,  Tambi and Pagilaran. Samples of green tea and black tea; quality I (BOP), quality II (BP), quality III (Bohea) were each collected from Tambi and Pagilaran to analyze the charasteristic of both sample from both sites. Measurements of tea samples were performed using a dynamic e-nose device based on a MOS gas sensor, with a maximum set point temperature of 40ºC, flushing 300 seconds, collecting 120 seconds, and purging 80 seconds for 10 cycles repeatedly. The resulting sensor response is then processed using the difference method for baseline manipulation. Characteristic of extraction process on the sensor response results is carried out in three methods; relative, fractional change, and integral. Matrix data of the feature extraction results was reduced using the PCA method by mapping the aroma patterns of each sample using 2-PCA components. The PCA reduction results in integral feature extraction showed the largest percentage of cumulative variance in classifying green tea sample data by 97% and black tea by 100%. The large percentage value of cumulative variance indicates PCA can differentiate samples of green tea and black tea from Tambi and Pagilaran well.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
David Cárdenas-Peña ◽  
Diego Collazos-Huertas ◽  
German Castellanos-Dominguez

Dementia is a growing problem that affects elderly people worldwide. More accurate evaluation of dementia diagnosis can help during the medical examination. Several methods for computer-aided dementia diagnosis have been proposed using resonance imaging scans to discriminate between patients with Alzheimer’s disease (AD) or mild cognitive impairment (MCI) and healthy controls (NC). Nonetheless, the computer-aided diagnosis is especially challenging because of the heterogeneous and intermediate nature of MCI. We address the automated dementia diagnosis by introducing a novel supervised pretraining approach that takes advantage of the artificial neural network (ANN) for complex classification tasks. The proposal initializes an ANN based on linear projections to achieve more discriminating spaces. Such projections are estimated by maximizing the centered kernel alignment criterion that assesses the affinity between the resonance imaging data kernel matrix and the label target matrix. As a result, the performed linear embedding allows accounting for features that contribute the most to the MCI class discrimination. We compare the supervised pretraining approach to two unsupervised initialization methods (autoencoders and Principal Component Analysis) and against the best four performing classification methods of the 2014CADDementiachallenge. As a result, our proposal outperforms all the baselines (7% of classification accuracy and area under the receiver-operating-characteristic curve) at the time it reduces the class biasing.


2019 ◽  
Vol 4 (2) ◽  
pp. 359-366
Author(s):  
Irfan Maibriadi ◽  
Ratna Ratna ◽  
Agus Arip Munawar

Abstrak,  Tujuan dari penelitian ini adalah mendeteksi kandungan dan kadar formalin pada buah tomat dengan menggunakan instrument berbasis teknologi Electronic nose. Penelitian ini menggunakan buah tomat yang telah direndam dengan formalin dengan kadar 0.5%, 1%, 2%, 3%, 4%, dan buah tomat tanpa perendaman dengan formalin (0%). Jumlah sampel yang digunakan pada penelitian ini adalah sebanyak 18 sampel. Pengukuran spektrum beras menggunakan sensor Piezoelectric Tranducer. Klasifikasi data spektrum buah tomat menggunakan metode Principal Component Analysis (PCA) dengan pretreatment nya adalah Gap Reduction. Hasil penelitian ini diperoleh yaitu: Hidung elektronik mulai merespon aroma formalin pada buah tomat pada detik ke-8.14, dan dapat mengklasifikasikan kandungan dan kadar formalin pada buah tomat pada detik ke 25.77. Hidung elektronik yang dikombinasikan dengan metode principal component analysis (PCA) telah berhasil mendeteksikandungan dan kadar formalin pada buah tomat dengan tingkat keberhasilan sebesar 99% (PC-1 sebesar 93% dan PC-2 sebesar 6%). Perbedaan kadar formalin menjadi faktor utama yang menyebabkan Elektronik nose mampu membedakan sampel buah tomat yang diuji, karena semakin tinggi kadar formalin pada buah tomat maka aroma khas dari buah tomat pun semakin menghilang, sehingga Electronic nose yang berbasis kemampuan penciuman dapat membedakannya.Detect Formaldehyde on Tomato (Lycopersicum esculentum Mill) With Electronic Nose TechnologyAbstract, The purpose of this study is to detect the contents and levels of formalin in tomatoes by using instruments based on Electronic nose technology. This study used tomatoes that have been soaked in formalin with a concentration of 0.5%, 1%, 2%, 3%, 4%, 5% and tomatoes without soaking with formalin (0%). The samples in this study were 18 samples. The measurements of the intensity on tomatoes aroma were using Piezoelectric Transducer sensors. The classification of tomato spectrum data was using the Principal Component Analysis (PCA) method with Gap Reduction pretreatment. The results of this study were obtained: the Electronic nose began to respond the smell of formalin on tomatoes at 8.14 seconds, and it could classify the content and formalin levels in tomatoes at 25.77 seconds. Electronic nose combined with the principal component analysis (PCA) method have successfully detected the content and levels of formalin in tomatoes with a success rate at 99% (PC-1 of 93% and PC-2 of 6%). The difference of grade formalin levels is the main factor that causes Electronic nose to be able to distinguish the tomato samples tested, because the higher of formalin content in tomatoes, the distinctive of tomatoes aroma is increasingly disappearing. Thereby, the Electronic nose based on  the olfactory ability can distinguish them. 


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 593 ◽  
Author(s):  
Qiangjian Gao ◽  
Yingyi Zhang ◽  
Xin Jiang ◽  
Haiyan Zheng ◽  
Fengman Shen

The Ambient Compressive Strength (CS) of pellets, influenced by several factors, is regarded as a criterion to assess pellets during metallurgical processes. A prediction model based on Artificial Neural Network (ANN) was proposed in order to provide a reliable and economic control strategy for CS in pellet production and to forecast and control pellet CS. The dimensionality of 19 influence factors of CS was considered and reduced by Principal Component Analysis (PCA). The PCA variables were then used as the input variables for the Back Propagation (BP) neural network, which was upgraded by Genetic Algorithm (GA), with CS as the output variable. After training and testing with production data, the PCA-GA-BP neural network was established. Additionally, the sensitivity analysis of input variables was calculated to obtain a detailed influence on pellet CS. It has been found that prediction accuracy of the PCA-GA-BP network mentioned here is 96.4%, indicating that the ANN network is effective to predict CS in the pelletizing process.


2021 ◽  
Vol 12 (3) ◽  
pp. 35-43
Author(s):  
Pratibha Verma ◽  
Vineet Kumar Awasthi ◽  
Sanat Kumar Sahu

Coronary artery disease (CAD) has been the leading cause of death worldwide over the past 10 years. Researchers have been using several data mining techniques to help healthcare professionals diagnose heart disease. The neural network (NN) can provide an excellent solution to identify and classify different diseases. The artificial neural network (ANN) methods play an essential role in recognizes diseases in the CAD. The authors proposed multilayer perceptron neural network (MLPNN) among one hidden layer neuron (MLP) and four hidden layers neurons (P-MLP)-based highly accurate artificial neural network (ANN) method for the classification of the CAD dataset. Therefore, the ten-fold cross-validation (T-FCV) method, P-MLP algorithms, and base classifiers of MLP were employed. The P-MLP algorithm yielded very high accuracy (86.47% in CAD-56 and 98.35% in CAD-59 datasets) and F1-Score (90.36% in CAD-56 and 98.83% in CAD-59 datasets) rates, which have not been reported simultaneously in the MLP.


Author(s):  
Brijesh Verma ◽  
Rinku Panchal

This chapter presents neural network-based techniques for the classification of micro-calcification patterns in digital mammograms. Artificial neural network (ANN) applications in digital mammography are mainly focused on feature extraction, feature selection, and classification of micro-calcification patterns into ‘benign’ and ‘malignant’. An extensive review of neural network based techniques in digital mammography is presented. Recent developments such as auto-associators and evolutionary neural networks for feature extraction and selection are presented. Experimental results using ANN techniques on a benchmark database are described and analysed. Finally, a comparison of various neural network-based techniques is presented.


Sign in / Sign up

Export Citation Format

Share Document