White Layer and Surface Roughness in High Speed Milling of P20 Steel

2007 ◽  
Vol 24-25 ◽  
pp. 45-54 ◽  
Author(s):  
Jun Zhong Pang ◽  
Min Jie Wang ◽  
Chun Zheng Duan

Using solid carbide straight end mills with TiAlN coating, A P20 steel at 41HRC is machined in the cutting speed range of 301 to 754m/min. The workpiece subsurface are examined using scanning electron microscope (SEM) and surface roughness tester. The results show that the white layer is produced in all of the cutting conditions tested, and the white layer thickness and surface roughness are dependent on the cutting conditions. The result obtained by analysis of variance analysis shows that feed rate and cutting speed are the most significant effects on the white layer thickness and surface roughness. Furthermore, the mathematical models for the white layer thickness and the surface roughness in high speed side milling of hardened P20 steel are proposed, respectively.

2009 ◽  
Vol 69-70 ◽  
pp. 418-422
Author(s):  
L.D. Wu ◽  
Cheng Yong Wang ◽  
D.H. Yu ◽  
Yue Xian Song

Hardened steel P20 at 50 HRC is milled at high speed by TiN coated and TiAlN coated solid carbide straight end mills, and the cutting forces and tool wear are measured. The result shows that TiAlN coated tool is more suitable for cutting hardened steel at high speed. Then the hardened steel is milled under different cutting parameters. It is indicated that the effect of cutting speed on cutting forces is small, but the effect of cutting speed on machine vibration should be considered. Increase feed per tooth or radial depth of cut will increase the cutting forces.


Author(s):  
Guisen Wang ◽  
Fuzhu Han ◽  
Liang Zhu

Abstract White layer and residual stress are the main reasons for the decrease in fatigue life of electrical discharge machined samples. Therefore, it is important to research the evolution of the white layer and residual stress in electrical discharge machining and explain the influence mechanism of machining parameters on them. In this study, the surface topography, white layer thickness, and residual stress of electrical discharge machined samples under different processing parameters were evaluated. The results indicated that surface roughness, white layer thickness, and residual stress increased as the discharge current (I) and pulse-on time (ton) increased. However, when the ton was short, the effect of I (≤ 9.8 A) on surface roughness is not very obvious. When the discharge energy is similar, surface roughness is high under high I conditions. When the discharge energy is similar and low, the average thickness of the white layer is thin under the low I. The effect of I on surface residual stress was greater than that of the ton. The I and ton affect the white layer and residual stress by affecting the amount of melting and removal of the materials. These results were demonstrated that the input process of discharge energy has an important influence on residual stress and the white layer. Therefore, under the premise of ensuring the processing requirements, they can be controlled by selecting the appropriate combination of the ton and I to improve the fatigue life of the workpiece.


Author(s):  
Thi-Hoa Pham ◽  
Duc-Toan Nguyen ◽  
Tien-Long Banh ◽  
Van-Canh Tong

In this study, experiments of high-speed face milling of A6061 aluminum alloy with a carbide insert milling cutter under dry cutting conditions were conducted. The contact length between tool and chip, the workpiece vibration amplitude, and the arithmetic average surface roughness were measured under varying cutting conditions (cutting speed, feed rate, and depth of cut). The characteristics of chip morphology were observed using scanning electron microscope. Experimental results showed that the increasing cutting speed reduced the tool–chip contact length, the workpiece vibration, and the surface roughness. The tool–chip contact length, the workpiece vibration, and the surface roughness were all increased with increasing cutting depth and feed rate. The results of chip morphology showed that the chips with serrated form were generated under high-speed cutting conditions. Moreover, scratch lines, plastic deformation cavities, and local molten chip material were observed on the slide chip surface.


2011 ◽  
Vol 697-698 ◽  
pp. 49-52 ◽  
Author(s):  
Xiao Yong Yang ◽  
Cheng Zu Ren ◽  
Guang Chen ◽  
Bing Han ◽  
Y. Wang

This study focused on the side milling surface roughness of titanium alloy under various cooling strategies and cutting parameters. The experimental results show that the cooling strategies significantly affect the surface roughness in milling Ti-6Al-4V. Surface roughness (Ra) alterations are investigated. Cutting fluid strategy made nearly all the smallest and most stable roughness values. The surface roughness values produced by all cooling strategies are obviously affected by feed, radial depth-of-cut and cutting speed. However, axial depth-of-cut has little influence.


2009 ◽  
Vol 69-70 ◽  
pp. 466-470
Author(s):  
Ya Jun Liu ◽  
Jia Bin Huang ◽  
Meng Yang Qin ◽  
Wei Xia ◽  
Yong Tang

This paper gives the details of High Speed Milling experiments with AISI 52100 steel (HRC52) by using coated carbide end mills. Cutting force and Surface roughness data are presented. The effects of cutting speeds (1000-8000rpm), widths of cut (0.05-0.4mm) and cutting conditions (dry cutting and dry cutting with air coolant) are investigated. The results show that in high speed milling of hardened steels, when cutting speed surpasses a critical value, cutting forces decrease as cutting speed increasing; and the increasing of widths of cut causes the increase of cutting forces approximately linearly; surface roughness does not experience obvious increase or decrease and has a minimum in a specific condition; the machining results of dry cutting with air.


2009 ◽  
Vol 83-86 ◽  
pp. 1009-1015 ◽  
Author(s):  
S. Alam ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari ◽  
Mohamed Konneh

In this study, statistical models were developed using the capabilities of Response Surface Methodology (RSM) to predict the surface roughness in high-speed flat end milling of Ti-6Al-4V under dry cutting conditions. Machining was performed on a five-axis NC milling machine with a high speed attachment, using spindle speed, feed rate, and depth of cut as machining variables. The adequacy of the model was tested at 95% confidence interval. Meanwhile, a time trend was observed in residual values between model predictions and experimental data, reflecting little deviations in surface roughness prediction. A very good performance of the RSM model, in terms of agreement with experimental data, was achieved. It is observed that cutting speed has the most significant influence on surface roughness followed by feed and depth of cut. The model can be used for the analysis and prediction of the complex relationship between cutting conditions and the surface roughness in flat end milling of Ti-6Al-4V materials. The developed quadratic prediction model on surface roughness was coupled with the genetic algorithm to optimize the cutting parameters for the minimum surface roughness.


2016 ◽  
Vol 686 ◽  
pp. 240-245
Author(s):  
Tomáš Vopát ◽  
Jozef Peterka ◽  
Vladimír Šimna ◽  
Ivan Buranský

The article deals with the tool life of ball nose end mills and surface roughness of steel C45 depending on up-copying and down-copying. The cemented carbide and high speed steel was used as tool material. Furthermore, the new and sharpened cutting tools were also compared. In the experiment, the cutting speed, feed rate, axial and radial depth of cut were not changed. The results show different achieved surface roughness of machined material C45 and tool life of ball nose end mills depending on the copy milling strategy for various tool materials.


Sign in / Sign up

Export Citation Format

Share Document