Research on Behavior of Circular Steel Tubes with Different Coating Subjected to Fire Load

2011 ◽  
Vol 243-249 ◽  
pp. 5227-5230
Author(s):  
Ming Zhou ◽  
Xin Tang Wang ◽  
Jie Yin ◽  
Zhi Guo Xie

The fire experiment was conducted for three of circular steel tubes protected with two different gypsum fireproof panel and the steel tube without any protective material. The fire response temperature of surface of steel tubes was measured and the axial compressive bearing capacity of the specimens after fire were tested and analyzed. The test results show that gypsum fireproof panel has better fire protection characteristics. It is noted that the variation of temperatures of inner surface of gypsum fireproof panel under fire is consistent with the temperature of outer surface of the steel tube. The maximum difference of temperature between the outer surface of the tube and the furnace space is 150°C as the fire keeps stable for the steel tube without any protection. It is concluded that two of the specimens protected with gypsum fireproof panel have larger post-fire capacity, which means that the gypsum fireproof panel has better effect on fireproof of the steel tube under fire.

2010 ◽  
Vol 163-167 ◽  
pp. 749-753
Author(s):  
Yao Ji ◽  
Xin Tang Wang ◽  
Ming Zhou ◽  
Wan Zhen Wang

In order to look into the causes of fire response and post-fire bearing capacity of the steel tubular columns protected with different materials, the fire test was conducted for a set of circular steel tubes protected with different materials such as gypsum fireproof panel, bamboo plywood and the ordinary lumber core plywood, and the steel tube without any protective material. The fire response temperature of surface of steel tubes is measured and the axial compressive bearing capacity of the specimens after fire are tested and analyzed. The test results show that gypsum fireproof panel has the best fire protection characteristics, the ordinary lumber core plywood and bamboo plywood can also retard rising of the surface temperature of the steel tubes during the initial 35min although they are combustible materials. It is found that the post-fire bearing capacity of the steel tubes protected with different materials varies evidently, and the maximum value of response temperature has the greatest effect.


2011 ◽  
Vol 71-78 ◽  
pp. 3721-3724 ◽  
Author(s):  
Ming Zhou ◽  
Xin Tang Wang ◽  
Jian Min Wang ◽  
Zhi Guo Xie

The post-fire behavior of a set of ceramsite concrete filled steel tubes (note as CCST) after exposure to fire are experimentally studied. Effect of the maximum value of fire response temperatures of the tubes and their geometric parameters on the strength and ductility of the specimens were especially discussed. The test results show that the specimens of CCST have higher post-fire bearing capacity and better ductility, there was no obvious descent segment in post-fire load-displacement curves of the most specimens subjected to fire load. It was concluded that the maximum response temperature of specimens has great effect on the post-fire bearing capacity of concrete-filled steel tubes subjected to fire load.


2010 ◽  
Vol 163-167 ◽  
pp. 1005-1011
Author(s):  
Yue Ling Long ◽  
Jian Cai

This paper presents a new model for uniaxial stress-strain relationship of concrete confined by rectangular steel tubes. The difference between concrete confinement effect provided by broad faces and that provided by narrow faces of steel tube is considered in the proposed model. The failure criteria for concrete subjected to triaxial compression is applied to estimate the ultimate strength of concrete core. The parameters of the model are determined based on the test results and the calculation of complete load-stress relationship curves is conducted for axially loaded rectangular CFT specimens using the model proposed in the paper. The concrete core strength and stress-strain behavior of rectangular CFT columns is found to exhibit good agreement with test results.


2013 ◽  
Vol 351-352 ◽  
pp. 138-142
Author(s):  
Zhi Bin Wang ◽  
Li Ying Liu

Concrete-filled steel tube reinforced concrete (CFSTRC) columns are currently being studied as a popular method to improve the shear strength, the ductility and the seismic behaviour of reinforced concrete (RC) columns. Owing to the complexity of confinement provided by steel tubes and stirrups, the behaviour of CFSTRC column is difficult to be accurately simulated. Thus,so far there is not a finite element (FE) model for CFSTRC columns. For studying the performance of this composite column, a FE model was developed based on the existing test results and theories. The predicted results using this FE model agree with the test results, which means that this model can be applied to carry out the further mechanism analysis.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1323-1326
Author(s):  
Yi Jie Huang ◽  
Huang Sheng Sun

A review on the properties of recycled aggregate concrete filled steel tubes (RACSFT) was presented, followed by the short overview on the related researches. The uniaxial mechanical behavior, flexural performance, creep performance as well as eccentric loaded behavior of RACSFT specimens were discussed. It was found that the differences between the element made of recycled aggregate concrete (RAC) and that of natural aggregate concrete (NAC) could not be ignored. The performance of the RACFST is inferior to that of natural concrete filled steel tube (CFST). But, the RACSFT can be applied into structural elements safely. Based on the test results, it was also concluded that the RACSFT is an effective method to improve the application of RAC.


2010 ◽  
Vol 168-170 ◽  
pp. 2154-2157
Author(s):  
Jing Yu Chen ◽  
Ying Hai

The use of steel tube confined concrete columns has been the interests of many structural engineers. For investigation of the axially loading capacity of short concrete filled double skin tubes (CFDST) columns, axial compression loading experiments were carried on 9 short CFDST column samples. According to experimental results and with numerical analysis, an ultimate load estimation equation of CFDST column with one correction parameter is presented, the linear relation between the parameter and the inner-to-outer diameters ratio Di/Do is given out. The ultimate load estimation equation is validated by the test results of short CFDST column samples.


2020 ◽  
pp. 136943322097478
Author(s):  
Song Li ◽  
Chu-Jie Jiao

Reactive powder concrete-filled steel tubes (RPCFSTs) have become an important research target in recent years. In engineering applications, RPCFSTs can provide superior vertical components for high-rise and tower buildings, thereby enabling developers to provide more floor space. However, this type of composite structure is prone to inelastic outward local buckling. The use of carbon fiber reinforced polymer (CFRP) wrapping to suppress such local buckling has shown great potential in limited test results. This paper presents experimental results concerning the axial compression of CFRP-confined reactive powder concrete-filled circular steel tubes (CF-RPCFSTs). We included 18 specimens in our experimental investigation, varying the number of CFRP layers, steel tube thickness, and RPC strength. According to our test results, CF-RPCFSTs exhibit compression shear failure and drum-shaped failure. The CFRP wrap can effectively enhance bearing capacity and postpone local buckling of the steel tube. In addition, three-layer CFRP-confined RPC-filled thin-wall steel tubes are suitable for engineering. We also propose a model to calculate the bearing capacity of CF-RPCFSTs. Compared to the existing model of CFRP-confined concrete-filled steel tubes, the results obtained using the proposed model are in good agreement with our experimental results.


2010 ◽  
Vol 97-101 ◽  
pp. 3070-3074
Author(s):  
Sheng Zhi Li ◽  
Jie Xu ◽  
Yuan De Yin ◽  
Hui Chao Su

The inner surface crack (ISC) defect easily occurs in seamless modified 9Cr-1Mo steel tubes rolled by the mandrel mill with high production efficiency. The reason for the formation of the ISC lies in both the properties of deformed material and rolling conditions. With the aid of commercial FE code MSC.SuperForm, the rolling process of modified 9Cr-1Mo seamless steel tube produced by the Mandrel Mill of Bao Steel in China was simulated, focusing on mechanical analysis of deformed metal. It was found from the simulation that the metal on the inner surface of the tube, in the position of 0 or 90 of the roll pass, experiences strong tensile stresses, especially the circumferential stress, which is closely related .to the strain behavior governed by the two-high pass caliber of the mandrel mill. Therefore an optimal design of the roll pass can be realized to decrease the tensile stress so as to relax the tendency to the ISC, which has been confirmed by the tests in Steel Tube & Pipe Company of Bao Steel.


2013 ◽  
Vol 721 ◽  
pp. 720-725
Author(s):  
Juan Wang ◽  
Jun Hai Zhao ◽  
Sai Wu ◽  
Nan Li

Based on the twin shear unified strength theory, analyzing the condition of load for the steel tube and the core-concrete under tri-axial compression, the formula of axial bearing capacity of steel reinforced concrete short column with double circular steel tubes was established and the influencing factors on it were discussed. By the comparison between the results calculated by the formula and the test results, it shows good agreement. Meanwhile, applying the formula to an engineering example, good agreement can be found in the comparison between the calculation in this paper and finite element analysis result in relevant literature. The conclusions can provide a reference for the engineering design.


2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
HaiYang Wang ◽  
XiaoXiong Zha ◽  
Wei Feng

The influence of concrete age and creep on the ultimate axial loading capacity of concrete-filled steel tube (CFST) columns is experimentally and numerically investigated. After validation of numerical models, a parametric study is conducted and the results are used to formulate empirical formulas for predicting the ultimate axial load-bearing capacity of the columns. Formulas are also proposed for predicting both the composite creep and aging coefficients of the CFST columns, which consider the confinement action of steel tubes on concrete. Then, the proposed formulas are validated independently by comparing their predictions with existing test results performed by other researchers. The comparisons show that the empirical formulas have the potential to be used in the practical design of CFST columns.


Sign in / Sign up

Export Citation Format

Share Document