Effect of Channel Depth of PEM Fuel Cell on its Peformance

2011 ◽  
Vol 287-290 ◽  
pp. 2531-2535
Author(s):  
Zheng Nan Jin ◽  
Hong Sun ◽  
Sheng Nan Zhao ◽  
Qian Liu

The electrode structure, especially for the channel depth, plays an important role on the performance of the proton exchange membrane (PEM) fuel cell. In this paper, the performance and electrochemical impedance of the PEM fuel cell are measured experimentally. The simulation results of mass transfer and equivalent circuit for the electrochemical impedance are used to explain the effect of the channel depth on the performance of the PEM fuel cell. These results show that when the cell temperature is lower than the gas humidification temperatures, the performance of PEM fuel cell with the channel depth of 2mm is better than that of 1mm; there is more liquid water saturation in cathode for the channel depth of 1mm than that for the channel depth of 2mm. The charge transfer resistance of the PEM fuel cell with the channel depth of 2mm is less than that with the channel depth of 1mm. These results are very helpful to optimizing structure of the PEM fuel cell.

Author(s):  
Yusuf Dewantoro Herlambang ◽  
Fatahul Arifin ◽  
Kurnianingsih ◽  
Totok Prasetyo ◽  
Anis Roihatin

The investigation the PEM fuel cell under various conditions was carried out through numerical simulation. The results revealed that the mass transport resistance, the ionic resistance, and charge transfer resistance defined the current distribution in the cathode catalyst layer. The highest current distribution in the cell was determined by the highest depletion of oxygen concentration in the exit side of the channel, and the amount of the reacted and carried oxygen towards the electrode surface of the mass transfer conditions. Among all simulation conditions, the current density on the shape gas channel with the channel ratio height-width 1:1 and 2:1 was 1,061 and 1,078 A/m2, respectively, with the power density of the cell was 3,714 W/m2 and 3,776 W/m2, respectively.


Author(s):  
Nana Zhao ◽  
Zhong Xie ◽  
Zhiqing Shi

Durability and cost are the two major factors limiting the large-scale implementation of fuel cell technology for use in commercial, residential, or transportation applications. The conditioning cost is usually negligible for making proton exchange membrane fuel cells (PEMFCs) at R&D or demo stage with several tens of stacks each year. However, with industry's focus shifting from component development to commercial high-volume manufacturing, the conditioning process requires significant additional capital investments and operating costs, thus becomes one of the bottlenecks for PEMFC manufacturing, particularly at a high production volume (>1000 stack/year). To understand the mechanisms behind PEMFC conditioning, and to potentially reduce conditioning time or even to eliminate the conditioning process, the conditioning behaviors of commercial Nafion™ XL100 and Nafion® NRE 211 membranes were studied. The potential effects of the membrane additive on fuel cell conditioning were diagnosed using in situ electrochemical impedance spectroscopy (EIS). It was found that the membrane additive led to the significant variation of the charge transfer resistance in EIS during conditioning, which affected the conditioning behavior of the membrane electrode assembly (MEA).


Author(s):  
Balaji Krishnamurthy ◽  
Vikalp Jha

This work investigates the effect of rib width, channel width and channel depth on the performance of a high temperature proton exchange membrane (HT-PEM) fuel cell with parallel flow field configuration. Simulation results indicate that the rib width has the maximum impact on the performance of the fuel cell. The lower the rib width, the better is performance of HT-PEM fuel cell. Changing the channel width seems to have a moderate effect, while changing the channel depth seems to have very limited impact on the fuel cell performance. The effect of various rib width and channel dimensions on the pressure drop across the channel is also studied. The concentration profile of the oxygen across the cathode gas channel is modeled as a function of the channel width and depth. Modeling results are found to be in well agreement with experimental data.


2011 ◽  
Vol 295-297 ◽  
pp. 2002-2006 ◽  
Author(s):  
Qian Liu ◽  
Hong Sun ◽  
Zheng Nan Jin ◽  
Li Hua Luan

Electrochemical impedance (EI) plays a very important role on the characteristics of proton exchange membrane (PEM) fuel cell. In this paper, the effects of the cell temperature and the humidification temperature on the electrochemical impedance are analyzed by the equivalent circuit. The results show: when the cell temperature is higher than the gas humidification temperature, ohms impedance and Faraday impedance increase markedly, and electric double layer in the PEM fuel cell inclines to the specialty of capacitive reactance; the more than the cell temperature the gas humidification temperatures is, the more the extent of specialty of capacitive reactance the electric double layer shows. These results are very helpful to understand the operating principle of PEM fuel cell and improve its performance.


2020 ◽  
Vol 20 (12) ◽  
pp. 7793-7799
Author(s):  
M. D. Lutful Kabir ◽  
Subir Paul ◽  
Sang-June Choi ◽  
Hee Jin Kim

A novel blend of membranes made of Nafion® and poly(vinylpyrrolidone) (PVP) was prepared and characterized to investigate its applicability in proton exchange membrane fuel cells (PEMFCs). In addition to being effectively proton conductive, the membranes exhibited better mechanical strength, chemical stability, and adequate water retention ability, as well as ion exchange capacity comparable to that of cast Nafion® membrane. The data obtained from an electrochemical impedance spectroscopy (EIS) fitting of the fuel cells revealed the membrane electrode assemblies (MEAs) made of 0.5 wt.% PVP/Nafion® had lower ohmic and charge transfer resistance compared with that of the Nafion® membrane. The intermolecular interactions and morphology of these membranes were assessed using Fourier-transform infrared spectroscopy and field-emission scanning electron microscopy. The results of the performance curve indicate that the introduction of PVP as a modifier played a vital role in improving membrane performance. Accordingly, this solution-casted polymer electrolyte membrane with suitable PVP content offers a simple way to improve electrochemical, mechanical, and chemical properties, and thereby promises the prospect of use in low-temperature PEMFCs.


2021 ◽  
Vol 11 (14) ◽  
pp. 6348
Author(s):  
Zijun Yang ◽  
Bowen Wang ◽  
Xia Sheng ◽  
Yupeng Wang ◽  
Qiang Ren ◽  
...  

The dead-ended anode (DEA) and anode recirculation operations are commonly used to improve the hydrogen utilization of automotive proton exchange membrane (PEM) fuel cells. The cell performance will decline over time due to the nitrogen crossover and liquid water accumulation in the anode. Highly efficient prediction of the short-term degradation behaviors of the PEM fuel cell has great significance. In this paper, we propose a data-driven degradation prediction method based on multivariate polynomial regression (MPR) and artificial neural network (ANN). This method first predicts the initial value of cell performance, and then the cell performance variations over time are predicted to describe the degradation behaviors of the PEM fuel cell. Two cases of degradation data, the PEM fuel cell in the DEA and anode recirculation modes, are employed to train the model and demonstrate the validation of the proposed method. The results show that the mean relative errors predicted by the proposed method are much smaller than those by only using the ANN or MPR. The predictive performance of the two-hidden-layer ANN is significantly better than that of the one-hidden-layer ANN. The performance curves predicted by using the sigmoid activation function are smoother and more realistic than that by using rectified linear unit (ReLU) activation function.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4520
Author(s):  
Xiaokang Yang ◽  
Jiaqi Sun ◽  
Guang Jiang ◽  
Shucheng Sun ◽  
Zhigang Shao ◽  
...  

Membrane water content is of vital importance to the freezing durability of proton exchange membrane fuel cells (PEMFCs). Excessive water freezing could cause irreversible degradation to the cell components and deteriorate the cell performance and lifetime. However, there are few studies on the critical membrane water content, a threshold beyond which freezing damage occurs, for cold storage of PEMFCs. In this work, we first proposed a method for measuring membrane water content using membrane resistance extracted from measured high frequency resistance (HFR) based on the finding that the non-membrane resistance part of the measured HFR is constant within the range of membrane water content of 2.98 to 14.0. Then, freeze/thaw cycles were performed from −50 °C to 30 °C with well controlled membrane water content. After 30 cycles, cells with a membrane water content of 8.2 and 7.7 exhibited no performance degradation, while those higher than 8.2 showed significant performance decay. Electrochemical tests revealed that electrochemical surface area (ECSA) reduction and charge transfer resistance increase are the main reasons for the degradation. These results indicate that the critical membrane water content for successful cold storage at −50 °C is 8.2.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4433
Author(s):  
Hyeon-Bee Song ◽  
Jong-Hyeok Park ◽  
Jin-Soo Park ◽  
Moon-Sung Kang

Proton-exchange membrane fuel cells (PEMFCs) are the heart of promising hydrogen-fueled electric vehicles, and should lower their price and further improve durability. Therefore, it is necessary to enhance the performances of the proton-exchange membrane (PEM), which is a key component of a PEMFC. In this study, novel pore-filled proton-exchange membranes (PFPEMs) were developed, in which a partially fluorinated ionomer with high cross-linking density is combined with a porous polytetrafluoroethylene (PTFE) substrate. By using a thin and tough porous PTFE substrate film, it was possible to easily fabricate a composite membrane possessing sufficient physical strength and low mass transfer resistance. Therefore, it was expected that the manufacturing method would be simple and suitable for a continuous process, thereby significantly reducing the membrane price. In addition, by using a tri-functional cross-linker, the cross-linking density was increased. The oxidation stability was greatly enhanced by introducing a fluorine moiety into the polymer backbone, and the compatibility with the perfluorinated ionomer binder was also improved. The prepared PFPEMs showed stable PEMFC performance (as maximum power density) equivalent to 72% of Nafion 212. It is noted that the conductivity of the PFPEMs corresponds to 58–63% of that of Nafion 212. Thus, it is expected that a higher fuel cell performance could be achieved when the membrane resistance is further lowered.


2000 ◽  
Author(s):  
Tianhong Zhou ◽  
Hongtan Liu

Abstract A comprehensive three-dimensional model for a proton exchanger membrane (PEM) fuel cell is developed to evaluate the effects of various design and operating parameters on fuel cell performance. The geometrical model includes two distinct flow channels separated by the membrane and electrode assembly (MEA). This model is developed by coupling the governing equations for reactant mass transport and chemical reaction kinetics. To facilitate the numerical solution, the full PEM fuel cell was divided into three coupled domains according to the flow characteristics. The 3-D model has been applied to study species transport, heat transfer, and current density distributions within a fuel cell. The predicated polarization behavior is shown to compare well with experimental data from the literature. The modeling results demonstrate good potential for this computational model to be used in operation simulation as well as design optimization.


Author(s):  
N. Akhtar ◽  
P. J. A. M. Kerkhof

The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a catalyst layer (CL). The liquid water saturation profiles have been calculated for varying structural and physical properties, i.e., porosity, permeability, thickness and contact angle for each of these layers. It has been observed that each layer has its own role in determining the liquid water saturation within the CL. Among all the layers, the GDL is the most influential layer that governs the transport phenomena within the PEMFC cathode. Besides, the thickness of the CL also affects the liquid water saturation and it should be carefully controlled.


Sign in / Sign up

Export Citation Format

Share Document