Numerical Simulation of Coupled Heat and Moisture Transfer in Porous Building Material

2011 ◽  
Vol 287-290 ◽  
pp. 3106-3111 ◽  
Author(s):  
Xiao Bin Zhang ◽  
Wei Bing Zhu ◽  
Si Peng Tan

Building envelope is a typical porous medium. The internal accumulation of moisture will not only affect the structural strength, but also cause the growth of bacterial in the structure, which can seriously affect the indoor air quality. In this work, the modified Luikov coupled heat and moisture transfer equation is derived by using finite difference method. A FORTRAN computer code is developed based on the supplied experiment conditions. The effect of various parameters (include temperature gradient, sorption isotherm, specific humidity etc.) on the coupled heat and moisture transfer and the relationship between the temperature gradient and the moisture gradient are discussed. The results show that the simulation results agree well with the experimental data.

2012 ◽  
Vol 19 (3) ◽  
pp. 669-674 ◽  
Author(s):  
Guo-jie Chen ◽  
Xiang-wei Liu ◽  
You-ming Chen ◽  
Xing-guo Guo ◽  
Yong-qiang Deng

Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 141 ◽  
Author(s):  
Shui Yu ◽  
Yumeng Cui ◽  
Yifei Shao ◽  
Fuhong Han

A building envelope is a multi-layer porous structure. It transfers heat and moisture to balance the indoor and outdoor temperature difference and water vapor partial pressure difference. This is a typical coupled heat and moisture migration process. When the space is filled with moist air, water or ice, it will directly affect the thermal properties of the material. With respect to moisture coming through the wall into the indoor building, it will also affect the indoor environment and the energy consumption due to the formation of latent heat. However, the moisture transfer process in the building envelopes is not taken into account in the current conventional thermal calculation and energy consumption analysis. This paper analyzes the indoor thermal and humidity environment and building energy consumption of typical cities in Harbin, Shenyang, Beijing, Shanghai, and Guangzhou. The results show that it is obvious that the coupled heat and moisture transfer in the building envelopes has an impact on the annual cooling and heating energy consumption, the total energy consumption, and the indoor thermal and humidity environment. The geographical location of buildings ranging from north to south influences the effect of coupled heat and moisture transfer on the annual energy consumption of the building, moving from positive to negative. It is suggested that the additional coefficient of the coupled thermal and moisture method can effectively correct the existing energy consumption calculation results, which do not take the consumption from the coupled heat and moisture in the building envelopes into account.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4180
Author(s):  
Joowook Kim ◽  
Michael Brandemuehl

Several building energy simulation programs have been developed to evaluate the indoor conditions and energy performance of buildings. As a fundamental component of heating, ventilating, and air conditioning loads, each building energy modeling tool calculates the heat and moisture exchange among the outdoor environment, building envelope, and indoor environments. This paper presents a simplified heat and moisture transfer model of the building envelope, and case studies for building performance obtained by different heat and moisture transfer models are conducted to investigate the contribution of the proposed steady-state moisture flux (SSMF) method. For the analysis, three representative humid locations in the United States are considered: Miami, Atlanta, and Chicago. The results show that the SSMF model effectively complements the latent heat transfer calculation in conduction transfer function (CTF) and effective moisture penetration depth (EMPD) models during the cooling season. In addition, it is found that the ceiling part of a building largely constitutes the latent heat generated by the SSMF model.


2021 ◽  
pp. 174425912110560
Author(s):  
Yassine Chbani Idrissi ◽  
Rafik Belarbi ◽  
Mohammed Yacine Ferroukhi ◽  
M’barek Feddaoui ◽  
Driss Agliz

Hygrothermal properties of building materials, climatic conditions and energy performance are interrelated and have to be considered simultaneously as part of an optimised building design. In this paper, a new approach to evaluate the energy consumption of residential buildings in Morocco is presented. This approach is based on the effect of coupled heat and moisture transfer in typical residential buildings and on their responses to the varied climatic conditions encountered in the country. This approach allows us to evaluate with better accuracy the response of building energy performance and the indoor comfort of building occupants. Annual energy consumption, cooling and heating energy requirements were estimated considering the six climatic zones of Morocco. Based on the results, terms related to coupled heat and moisture transfer can effectively correct the existing energy consumption calculations of the six zones of Morocco, which currently do not consider energy consumption due to coupled heat and moisture transfer.


Sign in / Sign up

Export Citation Format

Share Document