In Vitro and In Vivo Degradation, Mechanical Properties, and Histocompatibility of Weft-Knitted Silk Mesh-Like Grafts

2022 ◽  
Vol 12 (2) ◽  
pp. 411-416
Author(s):  
Liang Tang ◽  
Si-Yu Zhao ◽  
Ya-Dong Yang ◽  
Geng Yang ◽  
Wen-Yuan Zhang ◽  
...  

To investigate the degradation, mechanical properties, and histocompatibility of weft-knitted silk mesh-like grafts, we carried out the In Vitro and In Vivo silk grafts degradation assay. The In Vitro degradation experiment was performed by immersing the silk grafts in simulated body fluid for 1 year, and the results showed that the degradation rate of the silk mesh-like grafts was very slow, and there were few changes in the mechanical properties and quality of the silk mesh-like graft. In Vivo degradation assay was taken by implantation of the silk mesh-like grafts into the subcutaneous muscles of rabbits. At 3, 6, and 12 months postoperation, the rate of mass loss was 19.36%, 31.84%, and 58.77%, respectively, and the maximum load was 63.85%, 34.63%, and 10.76%, respectively of that prior to degradation. The results showed that the degradation rate of the silk graft and the loss of mechanical properties In Vivo were faster than the results obtained in the In Vitro experiments. In addition, there were no significant differences in secretion of serum IL-6 and TNF-α between the experimental and normal rabbits (P >0.05), suggesting no obvious inflammatory reaction. The findings suggest that the weft-knitted silk mesh-like grafts have good mechanical properties, histocompatibility, and In Vivo degradation rate, and therefore represent a candidate material for artificial ligament

2012 ◽  
Vol 06 ◽  
pp. 774-779
Author(s):  
QIAN ZHANG ◽  
X. G. Wang ◽  
PENG CAO ◽  
WEI GAO

Biodegradable stenting and implantation materials have received considerable attention in biomaterials community, with magnesium having been received most wide attention. However, magnesium corrodes too fast by nature, in human body environment. A new type of biodegradable metal – Fe and its alloys – has been introduced in recent years. In this study, a Fe 35 wt % Mn alloy was produced using powder sintering. Powder mixture was mechanically milled, pressed and then sintered to consolidate powder compacts. Microstructure characterization and hardness measurement were carried out on the as-sintered samples. In vitro degradability evaluation of the samples was performed in 5% NaCl and Simulated Body Fluid (SBF) media. The experimental results show that a higher porosity results in a higher degradation rate. All samples, with porosity being from 6.5% to 12.2 %, revealed a degradation rate from 0.6 to 1.4 mm/year.


2011 ◽  
Vol 493-494 ◽  
pp. 582-587 ◽  
Author(s):  
Marziyeh Abbasi-Shahni ◽  
Saeed Hesaraki ◽  
Ali Asghar Behnam-Ghader ◽  
Masoud Hafezi-Ardakani

In this study, nanocomposites based on of β-tri calcium phosphate (β-TCP) and 2.5-10 wt% merwinite nanoparticles were prepared and sintered at 1100-1300°c.The mechanical properties were investigated by measuring compressive strength and fracture toughness. Structural properties were evaluated by XRD, TEM and SEM analysis, and the in vitro bioactivity was studied by soaking the samples in simulated body fluid (SBF). The mechanical strength of the sintered samples wereincreased, by increasing the amount of merwinite phase up to 5 wt%, whereas it decreased when the samples were sintered at 1100 and 1200°c. Nanostructured calcium phosphate layer was formed on the surfaces of the nanocomposites within 1 day immersion in simulated body fluid. Because of appropriate mechanical properties the composite is suggested to be used as substitute for hard tissue.


2007 ◽  
Vol 330-332 ◽  
pp. 483-486
Author(s):  
Yun Qing Kang ◽  
Guang Fu Yin ◽  
Ke Feng Wang ◽  
Lin Luo ◽  
Li Liao ◽  
...  

The ability of apatite to form on the surface of biomaterials in simulated body fluid (SBF) has been widely used to predict the bone-bonding ability of bioceramic and bioceramic/polymer composites in vivo. Porous β-tricalcium phosphate/poly(L-lactic acid) (β-TCP/PLLA) composite scaffold was synthesized by new method. The ability of inducing calcium phosphate (Ca-P) formation was compared in static simulated body fluid(sSBF) and dynamic simulated body fluid (dSBF). The Ca-P morphology and crystal structures were identified using SEM, X-ray diffraction and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the typical features of bone-like apatite formation on the surface and the inner pore wall of β-TCP/PLLA. Ca-P formation on scaffold surfaces in dSBF occurred slower than in sSBF and was more difficult with increasing flow rate of dSBF. The ability of apatite to form on β-TCP/PLLA was enhanced by effect of each other that has different degradable mechanism. Porous β-TCP/PLLA composite scaffold indicates good ability of Ca-P formation in vitro.


Cellulose ◽  
2016 ◽  
Vol 23 (5) ◽  
pp. 3187-3198 ◽  
Author(s):  
Baoxiu Wang ◽  
Xiangguo Lv ◽  
Shiyan Chen ◽  
Zhe Li ◽  
Xiaoxiao Sun ◽  
...  

2006 ◽  
Vol 309-311 ◽  
pp. 453-456 ◽  
Author(s):  
Haydée Y. López ◽  
Dora A. Cortés-Hernández ◽  
Sergio Escobedo ◽  
D. Mantovani

In the aim to decrease the degradation rate of magnesium in simulated body fluid, pure magnesium was treated by two different routes, i) by soaking specimens in an HF aqueous solution at 30oC for 30 min and ii) by heating specimens at 345oC for 15 min. The treated samples were immersed in simulated body fluid (SBF) at 37oC for different periods of time. Samples with no treatment were also immersed in SBF. The magnesium released into the SBF, the weight loss of the specimens and the pH of SBF increased with time of immersion in all the cases. The heat treated samples showed a lower degradation rate and lower pH values. A substantial decrease of magnesium concentration in the SBF corresponding to the heat treated samples was also observed. However, the degradation rate of the heat treated samples remains being extremely high. On the other hand, a bonelike apatite layer was observed after only 3 days of immersion in SBF in all the cases. The thickness of this layer increased with time of immersion. Further research needs to be performed to decrease the degradation rate. However, these results indicate that magnesium is a highly potential bioactive material for biomedical applications.


2005 ◽  
Vol 475-479 ◽  
pp. 2371-2374 ◽  
Author(s):  
Xue Bin Zheng ◽  
Xuan Yong Liu ◽  
Wei Chang Xue ◽  
Chuan Xian Ding

Wollastonite and dicalcium silicate coatings have been prepared on Ti-6Al-4V substrate via plasma spraying. Bond strength test, simulated body fluid (SBF) immersion, in vitro cell culturing, and in vivo implantation were carried out to evaluate their mechanical and biological characteristics. The results obtained showed that both coatings possess higher bond strength as compared with hydroxyapatite (HA) coating. In the meanwhile, the good bioactivity and biocompatibility were confirmed in this study.


2006 ◽  
Vol 309-311 ◽  
pp. 271-274 ◽  
Author(s):  
Ji Yong Chen ◽  
You Rong Duan ◽  
Chun Lin Deng ◽  
Qi Yi Zhang ◽  
Xing Dong Zhang

In vitro method has often been used in the biodegradation/bioactivity evaluation of bioactive ceramics for its convenience and saving in time and outlay. The simulated body fluid (SBF) suggested by Kokubo was a good simulation of the osteoproduction environment in osseous tissue and has been proved to be a good method to study the bioactivity of biomaterials and the mechanism of bone bonding. But SBF is not a suitable method to research the osteoinduction of biomaterials. The results from SBF were not consistent with that from in vivo in muscle. The local ion concentration is the key factors to affect the nucleation and growth of apatite. In muscle the effect of body fluid flowing on local ion concentration cannot be ignored. A dynamic SBF suggested by these authors of this paper not only simulated the ion concentration of body fluid, but also simulated the effect of body fluid flowing on the local ion concentration near the surface or in biomaterials in muscle. The results from the dynamic SBF were in good agreement with that of the implantation experiments in muscle. The results from dynamic SBF showed that apatite only formed on the walls of macropores of the porous CaP, no apatite formed on the surface of both dense and porous CaP. The new bone only formed on the walls of macropores of porous CaP implanted in muscles, no apatite or osseous tissue could be found on the surfaces of both porous and dense CaP. The dynamic SBF preferably simulated the osteoinduction environment in non-osseous tissue and can be used in osteoinductivity evaluation of bioceramics.


2011 ◽  
Vol 493-494 ◽  
pp. 572-576
Author(s):  
Heather Elizabeth Stone ◽  
Helen Lu ◽  
Racquel Z. LeGeros

Both natural and synthetic materials have been utilized to provide three dimensional scaffold environments ideal for bone repair. The biomechanical and biocompatibility characteristics of these scaffolds play a vital role in successful tissue engineering constructs. Polymer/carbonate apatite (CHA) composites have shown to improve cell adhesion and proliferation on the scaffold as well as increase elastic modulus, toughness and strength. The aim of this study is to prepare CHA- polylactic-co-glycolide (PLGA) composites in the form of microsphere, scaffold and disc and evaluate their physico-chemical properties, mechanical properties and in vitro bioactivity. 3-D porous cylindrical composite scaffolds were prepared using PLGA/CHA composites with varying PLGA/CHA ratios (30:70 and 50:50). The CHA was prepared by hydrolysis method and characterized using x-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR). The physico-chemical and mechanical properties of the composite scaffolds were evaluated using scanning electron microscopy (SEM), micro-computed tomography (μCT), XRD, FTIR, and thermogravimetry (TGA). Flexural strength was determined using Instron. In vitro bioactivity was determined by the formation of apatite on composite disc surfaces after immersion in simulated body fluid (SBF). SEM and μCT analyses showed high porosity and interconnectivity between microspheres in the composite scaffolds. In vitro bioactivity was observed by the development of an apatite layer on the surfaces of the composite scaffolds after immersion in simulated body fluid. The mechanical strength of the scaffolds was to be dependent on the PLGA-CHA ratio. The elastic modulus, toughness and strength values obtained for the composites were similar to those of reported bone substituted materials. Results from this study provided information on the fabrication of PLGA-CHA scaffolds and their properties that may be useful for their potential application in bone repair and as scaffolds in tissue engineering for bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document