Study of Multi-Point Flexible Floating Clamping System of Multi-Roll Stretch Forming Process

2011 ◽  
Vol 291-294 ◽  
pp. 282-285 ◽  
Author(s):  
Hao Han Zhang ◽  
Ming Zhe Li ◽  
Wen Zhi Fu ◽  
Xue Chen

Multi-Roll Stretch forming process is a new flexible process which is used for forming hyperbolic-degree surface pieces. Using the Multi-point flexible floating clamping system, the metal sheet can be more easily formed, and the flexibility can be much higher, which the ordinary floating clamping cannot have. A series of finite element simulations and experiments have been done for the process of forming saddle-shaped parts using Multi-Point flexible floating clamping system, and ordinary floating clamping system. The results show that the quality of the part formed using flexible floating clamping system is better.

2011 ◽  
Vol 328-330 ◽  
pp. 13-17 ◽  
Author(s):  
He Li Peng ◽  
Mine Zhe Li ◽  
Qi Gang Han ◽  
Peng Xiao Feng ◽  
Hao Han Zhang

In order to improve the performance of back drawing type of flexible multi-gripper stretch forming machine used for double-curvature metal sheet forming, back and down drawing type of flexible multi-gripper stretch forming machine was designed by finite element method (FEM), which has simple structure and cheap cost. The FE model of flexible multi-gripper stretch forming was established, and extensive numerical simulations of spherical parts for two kinds of flexible stretch forming machines were carried out. The variations of stress, strain, thickness and springback value of spherical parts for two kinds of drawing modes were analyzed. The numerical results show that the quality of spherical parts formed by the back and down drawing type of stretch forming machine is better than that by the back drawing type of stretch forming machine. This work provides a machine for developing the technology of stretch forming.


2010 ◽  
Vol 44-47 ◽  
pp. 2752-2756 ◽  
Author(s):  
Hao Han Zhang ◽  
Ming Zhe Li ◽  
Wen Zhi Fu ◽  
Zhi Qing Hu

Multi-Roll Stretch Forming process is a new flexible process which is used in forming hyperbolic-degree surface pieces. A series of finite element simulations and experiments have done for the process of forming saddle-shaped parts using two kinds of clamps named Tooth-type clamp and Wave-type clamp. The results show that Wave-type clamp can control the stretching force at an appropriate value. When the stretching force exceeds a critical value, the sheet metal can flow to the opposite direction of Stretch Forming as to maintain that stretching force. The formed part using Wave-type clamp has a better quality than the parts formed using Tooth-type clamp.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 337 ◽  
Author(s):  
Jian Xing ◽  
Yan-yan Cheng ◽  
Zhuo Yi

To improve the effect of multi-point stretch forming of sheet metal, it is proposed in this paper to replace a fixed ball head with a swinging ball head. According to the multi-point dies with different arrangements, this research establishes finite element models of the following stretch forming, i.e., fixed ball heads with conventional arrangement, swinging ball heads with conventional arrangement, swinging ball heads with declining staggered arrangement, and swinging ball heads with parallel staggered arrangement, and then numerical simulation is performed. The simulation results show that by replacing a fixed ball head with a swinging ball head, the surface indentation of the part formed was effectively suppressed, the stress and tension strain distribution of the part formed was improved, and the forming quality was improved; the thickness of the elastic pad was reduced, the springback was reduced and the forming accuracy was improved; and when the ball head was applied to a multi-point die with staggered arrangement, a better forming result was achieved, where the best forming result was achieved in combining the swinging ball heads with the multi-point die with a parallel staggered arrangement. Forming experiments were carried out, and the experimental results were consistent with the trend of numerical simulation results, which verified the correctness of the numerical simulation.


2014 ◽  
Vol 722 ◽  
pp. 140-146
Author(s):  
Wen Juan Zhang ◽  
Long Wu ◽  
Gang Chen

In this paper the drawing process of Box-torque was simulated by Dynaform, which is FEM simulation software. The process parameters, which affected the quality of forming, were optimized by finite element simulation. The emphasis was focus on the optimization of draw-bead and BHF and data were summarized from the optimization graphs. In this simulation, lengthways draw-bead was set on the technical face for reducing or eliminating wrinkle. It was innovation difference from the usual that the draw-bead was set on binder. Finally the correctness of simulation was approved by comparing the optimization of simulation with the data of experimentation.


2018 ◽  
Vol 5 (2) ◽  
pp. 3802-3810 ◽  
Author(s):  
Kurra Suresh ◽  
Srinivasa Prakash Regalla ◽  
Nitin Kotkundae

2021 ◽  
Author(s):  
Mehmet Okan Görtan ◽  
Ümit Türkmen

Stretch forming process is primarily used for generating curved structures from sheet metals such as car body panels or aircraft fuselage panels. Although there are large number of studies about stretch forming, these investigations focus mainly on flat sheet metals. However, various parts especially in the automotive industry, such as passenger car fenders are first preformed to a profile and afterwards stretch formed to generate desired final geometry. Moreover, as a consequence of weight reduction activities, these fender parts are usually made of ultra-high strength steels (UHSS) in the last two years. In the current study, stretch forming characteristics of an open profile made of martensitic UHSS (MS1500) are investigated using finite elements method (FEM). Used geometry was an asymmetrical hat profile which was preformed using roll forming prior to stretch forming. Mechanical properties of the material used is characterized using tensile test and modeled using Swift isotropic strain hardening rule. Strain and stress distribution along the bend section, geometry and springback in the final part as well as forming force have been investigated using finite element (FE) simulations. A twist has been observed in the final product along its longitudinal axis. To validate the FE results, experiments have been conducted. Twist problem is also detected in the manufactured samples. The amount of springback in produced part was similar to the experiments. It is found that FE simulations can model stretch forming process of open profiles accurately.


2005 ◽  
Vol 14 (6-7) ◽  
pp. 633-651 ◽  
Author(s):  
Xiaobo Yu ◽  
Lin Ye ◽  
Yiu-Wing Mai ◽  
Bruce Cartwright ◽  
Damian McGuckin ◽  
...  

2015 ◽  
Vol 1115 ◽  
pp. 109-112 ◽  
Author(s):  
M. Eshteyah ◽  
Meftah Hrairi ◽  
M.S. Dawood ◽  
A.K.M. Mohiuddin

Clinching is one of the important new joining techniques, in which two plate metal parts are locally plastically deformed by mechanical interlock. Clinching is a mechanical joining method by using simple tools that consist of a punch, a die, and a blank-holder. The shapes of these tools are the most important parameters that control the final geometry of the clinch joints which in turn strongly affect the strength and quality of the final joint. In this study, finite element simulations are carried out to investigate some of the difficulties regarding the optimization of the process parameters, and major expected geometric parameters that will influence the strength, joinability, and the quality of the joint.


Author(s):  
Henri Champliaud ◽  
Zhengkun Feng ◽  
David Provencher ◽  
Danick Tousignant ◽  
Javad Gholipour

A fifth order piecewise spline interpolation model has been developed for computing the evolving geometry of a plate deformed by line heating thermal gradients. 3D formulations are presented and applied to continuously derivable geometries to demonstrate the capability of the methodology. Then the developed formulation is used to form gradually, with a sequence of heating lines, a 3D shape from an initially flat plate. The geometric results obtained from finite element simulations with three heating lines are used to illustrate where heating lines should be applied on a flat plate to achieve the intended geometry of a workpiece. Furthermore, it is shown that applying the developed piecewise fifth order spline interpolation model to the same flat plate produces results very close to the ones obtained from the thermal structural FE simulations.


Sign in / Sign up

Export Citation Format

Share Document