Static Performance Analysis on Combined Truss with Steel Tube and Concrete-Filled Steel Tube Based on Total Strain Crack Constitutive Model

2011 ◽  
Vol 311-313 ◽  
pp. 1884-1888
Author(s):  
Hong Yu Lin

Based on the total strain crack constitutive model and the available testing data, finite element model on three trusses were established by the finite element procedure MIDAS/FEA and the analysis were executed in order to verify the validity of constitutive model and study the static performance of combined truss. The results show that the finite element model based on total strain crack constitutive can reflect the static performance of combined truss and can carry the affective parameters analysis, which can offer theory evidence for engineering application of combined truss. The failure of three trusses were due to joint failure, however the failure modes were different and changed by the concrete filled in chord. The bearing capacity of three trusses was controlled by the jionts and the strength and stiffness of jionts were increased by the concrete filled in the chord, therefore the bearing capacity of trusses was increased while the deformation was decreased. In combined truss with steel tube and concrete filled steel tube, the concrete-filled steel tube joints can improve the bearing capacity and the steel tube joint can satisfy the requirements of plastic deformation, which have obvious advantages in the engineering application.

2011 ◽  
Vol 311-313 ◽  
pp. 1889-1893
Author(s):  
Ya Wen Du ◽  
Hong Yu Lin

Finite element analysis on three trusses was carried out in order to study the performance of combined truss with steel tube and concrete filled steel tube. The first specimen was a RHS truss, the second one was a combined truss with steel tube and concrete filled steel tube, and the third one was a concrete-filled steel tube truss. The results show that the finite element model can reflect the static performance of combined truss and can carry out the affective parameters analysis, which can offer theory evidence for engineering application of combined truss. The damage of three trusses was all due to the joint failure and the failure mode was all punishing shearing failure, but the concrete filled changed by the failure place of joints. The bearing capacity of three trusses was controlled by the jionts and the strength and stiffness of jionts were increased by the concrete filled in the chord, therefore the bearing capacity of trusses was increased while the deformation of trusses was decreased. In combined truss with steel tube and concrete filled steel tube, the concrete-filled steel tube joints can improve the bearing capacity and the steel tube joint can satisfy the requirements of deformation, which have obvious advantages in the engineering application.


2019 ◽  
Vol 23 (6) ◽  
pp. 1074-1086 ◽  
Author(s):  
Tao Zhu ◽  
Hongjun Liang ◽  
Yiyan Lu ◽  
Weijie Li ◽  
Hong Zhang

This article investigates the behaviour of slender concrete-filled steel tube square columns strengthened by concrete-filled steel tube jacketing. The columns were realised by placing a square outer steel tube around the original slender concrete-filled steel tube column and pouring strengthening concrete into the gap between the inner and outer steel tubes. Three concrete-filled steel tube square columns and seven retrofitted columns ranging from 1200 to 2000 mm were tested to failure under axial compression. The experimental parameters included three length-to-width ( L/ B1) ratios, three width-to-thickness ( B1/ t1) ratios and three strengths of concrete jacket (C50-grade, C60-grade and C70-grade). Experimentally, the retrofitted columns failed in a similar manner to traditional slender concrete-filled steel tube columns. After strengthening, the retrofitted columns benefitted greatly from the component materials, with their load-bearing capacity and ductility notably enhanced. These enhancements were mainly brought about by sectional enlargement and good confinement of concrete. A finite element model was developed using ABAQUS to better understand the axial behaviour of the retrofitted specimens. A parametric study was conducted, with parameters including the length of the column, thickness of the outer steel tube, strength of the concrete jacket, yield strength of the outer steel tube, thickness of the inner steel tube and strength of the inner concrete. Furthermore, the finite element model was adopted to study the behaviour of rust-damaged and post-fire slender concrete-filled steel tube square columns strengthened by square concrete-filled steel tube jacketing. A modified formula was proposed to predict the load-bearing capacity of retrofitted specimens, and the numerical results agreed well with the experiments and the finite element results of undamaged, rust-damaged and post-fire specimens. It could be used as a reference for practical application.


2012 ◽  
Vol 446-449 ◽  
pp. 688-694 ◽  
Author(s):  
Qi Shi Zhou ◽  
Yin Xu ◽  
Zhi Wu Yu

Nonlinear finite element model is established for the square interior constrained concrete filled steel tube column based on the research of the element type and material constitutive relation with finite element software ANSYS to find out the influence of the thickness of the steel tube, location of studs and geometry of the stirrups on the compression capacity of the short column, The results show that the compression capacity of the short column has something to do with the thickness of the steel tube and the studs, but the stirrups can eventually enhance a lot for the compression capacity as the validity is confirmed for the coherence of the results stepped from the finite element model and in test.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110446
Author(s):  
Gang Wu ◽  
Wei-Xin Ren ◽  
Ya-Fei Zhu ◽  
Syed M Hussain

The butterfly-shaped concrete-filled steel tube (CFST) arch bridge is an irregular bridge with unique esthetics. In this paper, this new shape of CFST arch bridge is introduced, and a refined three-dimensional finite element model (FEM) is established to evaluate static and dynamic behavior of the bridge. In order to reduce model errors, the FEM is calibrated according to numerical analysis and field tests. Static calculation results show that the butterfly-shaped bridge has good structural performance. The bending moment and axial force of the arch ribs increase when the camber angle of suspender changing from 15° to 50°. Dynamic test is carried out by ambient vibration testing under traffic and wind-induced excitations. The modal parameters of the bridge were calculated by the stochastic subspace identification method in the time domain. In terms of natural frequencies and mode shapes, the FEM analysis was validated by experimental modal analysis. The updated model thus obtained can be treated as a baseline finite element model, which is suitable for long term monitoring and safety evaluation of the structure in different severe circumstances such as earthquakes and wind loading in future.


2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


Sign in / Sign up

Export Citation Format

Share Document