An Optimum-Curved Die-Profile for Investment Casting of Turbo Blades

2011 ◽  
Vol 314-316 ◽  
pp. 630-633
Author(s):  
Yi Wei Dong ◽  
Ding Hua Zhang ◽  
Kun Bu ◽  
Yang Qing Dou

In order to avoid tremendous modifications of the die cavity for investment casting of turbo blades, this paper proposed an inverse iterative compensation method that adjusts certain geometric parameters to establish the die-profile. The parameterized modeling is achieved by identifying geometric parameters describing the mean camber line; the optimum-curve die-profile can be obtained based on the inverse iteration algorithm. As a result, the dimension precision of turbo blades can be guaranteed. The applicability of this method is validated using numerical simulation data.

2020 ◽  
Vol 174 ◽  
pp. 01057
Author(s):  
Yuri Govorukhin ◽  
Victor Krivolapov ◽  
Dmitry Paleev ◽  
Vyacheslav Portola

Investigations of aerodynamic processes occurring in dead-end short entriesaired by turbulent diffusion have been performed. The numerical simulation of the processes of air movement through the entry, flow stalling at the junction with the dead-end entry (for side junction), and the formation of vortices at the dead end have been carried out. The study has been done for a wide range of air flows submitted for computation of air consumption and for various geometric parameters of the dead-end entry. The sizes of the vortex structures and the flow rates in the dead endshave been determined. Based on the results of processing the simulation data, we obtained graphs of the dependences between the length of the ventilated zone of the dead end and its height and width.


1974 ◽  
Vol 29 (6) ◽  
pp. 901-904 ◽  
Author(s):  
O. Oberhammer ◽  
O. Glemser ◽  
H. Klüver

The molecular structure of ClNSOF2 was determined by electron diffraction of gases. The following geometric parameters were obtained:Cl-N=1.715(5), S=N=1.484(7), S=O=1.394(3), S-F=1.548(3) Å, ∢ ClNS=114.7 (8), ∢ FSF=92.6(.8), ∢ NSF=111.8(.9) ∢ NSO=117.4 (3.1) and ∢ OSF=108.6 (.8)°. The results for the mean square amplitudes of vibration are given in the paper and an attempt is made to explain differences in corresponding parameters of some related molecules.


2012 ◽  
Vol 569 ◽  
pp. 395-399
Author(s):  
Jing Zhao ◽  
Guo Yu Wang ◽  
Yan Zhao ◽  
Yue Ju Liu

A numerical simulation approach of ventilated cavity considering the compressibility of gases is established in this paper, introducing the gas state equation into the calculation of ventilated supercavitating flow. Based on the comparison of computing results and experimental data, we analyzes the differences between ventilated cavitating flow fields with and without considered the compressibility of gases. The effect of ventilation on the ventilated supercavitating flow field structure is discussed considering the compressibility of gases. The results show that the simulation data of cavity form and resistance, which takes the compressibility of gases into account, accord well with the experimental ones. With the raising of ventilation temperature, the gas fraction in the front cavity and the gas velocity in the cavity increase, and the cavity becomes flat. The resistance becomes lower at high ventilation temperature, but its fluctuation range becomes larger than that at low temperature.


Author(s):  
P. Fede ◽  
O. Simonin ◽  
I. Ghouila

Three dimensional unsteady numerical simulations of dense pressurized polydisperse fluidized bed have been carried out. The geometry is a medium-scale industrial pilot for ethylene polymerization. The numerical simulation have been performed with a polydisperse collision model. The consistency of the polydisperse model predictions with the monodisperse ones is shown. The results show that the pressure distribution and the mean vertical gas velocity are not modified by polydispersion of the solid phase. In contrast, the solid particle species are not identically distributed in the fluidized bed indicating the presence of particle segregation.


1986 ◽  
Vol 84 (3) ◽  
pp. 1788-1794 ◽  
Author(s):  
John E. Straub ◽  
Michal Borkovec ◽  
Bruce J. Berne

Author(s):  
Zhenzhong Li ◽  
Jinjia Wei ◽  
Bo Yu

Multiphase flow with particles covers a wide spectrum of flow conditions in natural world and industrial applications. The experiments and the direct numerical simulation have become the most popular means to study the dilute particle-laden flow in the last two decades. In the experimental study, the mean Reynolds number is often adjusted to the value of single-phase flow for each set of particle conditions. However, the friction Reynolds number usually keeps invariable in the direct numerical simulation of the particle-laden flows for convenience. In this study the effect of the difference between given mean Reynolds number and friction Reynolds number was investigated. Two simulations were performed for each set of particle parameters, and the mean Reynolds number and friction Reynolds number were kept invariant respectively. From the results it can be found that the turbulence intensity and the dimensionless velocities are larger when keeping the friction Reynolds constant. And the results calculated from the cases of keeping the mean Reynolds number invariable agree with the experiment results better. In addition, the particle distribution along the wall-normal coordinate was found to be unchanged between two simulation conditions. As a suggestion, keeping the same mean Reynolds number in the direct numerical simulation of particle-laden flow is more appropriate.


Sign in / Sign up

Export Citation Format

Share Document