Effects of Tool Rake Angle on the Curved Radius during Planing-Forming Process of Fine Heat Sink

2011 ◽  
Vol 317-319 ◽  
pp. 370-373 ◽  
Author(s):  
Liang Wei ◽  
Zhao Qin Yu ◽  
Le Le Zhang ◽  
Yong Jun Zhang

Planing-forming is a new process to machine fin heat sinks. This paper investigates the effects of the tool rake angle on the curved radius during planing-forming process by 2-D coupled thermo-mechanical finite element method and experiment verification. With the increasing of the tool rake angle from 0° to 30°, the curved radius increased. When the tool rake increased form 30°to 60°, the curved radius turned stable. After the chip displaced from the tool rake, the fin’s curling up due to the distribution gradient of the residual strain.

Author(s):  
Fei Teng ◽  
Hongyu Wang ◽  
Juncai Sun ◽  
Xiangwei Kong ◽  
Jie Sun ◽  
...  

The surface groove structure has numerous functions based on their shapes. In order to make these functions developed, both new shapes and processing forms of the surface structures are being innovated. In this paper, not only the advanced rubber pad forming process is used, but also a new kind of micro-groove with two-step structures is designed. A model based on multi-plane slab method is proposed to analyze the process. According to the stress acting condition, a half of two-step micro-groove structure is divided into seven areas in the width direction. The thickness variation of plate in each area is obtained. When the shape, depth, width, and height ratio of the first and second-step micro-groove are different, the thickness variations of the plate are analyzed. In order to verify the accuracy of the model, both finite element method and pressing experiment are done. Based on the results provided by both finite element method and experiment, the accuracy of results calculated by analytical model is verified.


Author(s):  
Dominique Bigot ◽  
Hocine Kebir ◽  
Jean-Marc Roelandt

Nowadays, the simulation of forming processes is rather well integrated in the industrial numerical codes. However, to take into account the possible modifications of the tool during cycle of working, we develop dedicated numerical software. This one more particularly will allow the identification of the fatigue criteria of the tool. With the view to conceiving the optimal shapes of tool allowing increasing their lifespan while ensuring a quality required of the part thus manufactured. This latter uses coupling with friction finite element method — for modelling the axi-symmetric part — and boundary element method — for modelling the tool. For the validation, we modeled forming process.


2011 ◽  
Vol 221 ◽  
pp. 679-683
Author(s):  
Hui Min Li ◽  
Wei Gang Guo

The research progress was introduced about multi-point forming press. It include forming process, reconfigurable die and finite element method. The forming method provided the techonology for development of the aviation industry and automotive industry. The application prospect and techonology dominance were instructed by illuminating body frame of coach.


1982 ◽  
Vol 104 (3) ◽  
pp. 305-311 ◽  
Author(s):  
Ming-Ching Tang ◽  
Shiro Kobayashi

The metal-forming process of shell nosing at room temperature was analyzed by the finite-element method. The strain-rate effects on materials properties were included in the analysis. In cold nosing simulations, the nine-node quadrilateral elements with quadratic velocity distribution were used for the workpiece. The treatment of a moving boundary in the analysis of nosing is discussed and successfully implemented in the finite-element program. FEM simulations of 105-mm dia. shells of AISI 1018 steel and aluminum 2024 were performed and solutions were obtained in terms of load-displacement curves, thickness distribution, elongation, and strain distributions. Comparisons with experimental data show very good agreement.


2010 ◽  
Vol 44-47 ◽  
pp. 2931-2934
Author(s):  
Chun Ling Wu ◽  
Bang Yan Ye

Ultra-fine grained chips with higher hardness and strength than bulk can be produced by severe plastic deformation during orthogonal metal cutting. A finite element method was developed to characterize the distribution of stress, strain, strain rate and temperature in the deformation area at different rake angles and cutting velocities. The coefficient of friction in the tool-chip interface is approximately obtained according model of mean coefficient of friction which is based on experiments in any machining conditions. The formation mechanics of ultra-fine grained chip is discussed and effect of rake angle on microstructure of chips is highlighted. The results of experiment and modeling have shown that chip materials with ultra-fine grained and high hardness can be produced with more negative tool rake angle at some lower cutting velocity.


Metal forming process is a widely used manufacturing process especially in high volume metal production system. In this paper, the main objective is using Bubnov-Galerkin finite element model to derive the pressure field set up at various cross-sections of a metal blank during a forging process, and the four Lagrange quadratic elements were assembled to represent the various metal blank. The governing equation adopted for this paper is a one-dimensional differential equation describing the pressures exerted on the forging process. During the analysis, the various metal blanks are divided into a finite number of elements and the weighted integral form for each element were formed after applying the Bubnov-Galerkin weighted residual method. A matrix form under certain boundary conditions from the weighted residual method were used to obtain the pressure distribution across the cross-section of the various metal blanks. Finite element results are obtained for a value of a circular disc diameter, thickness, coefficient of friction, principal stress, length, and radius of a circular material. Finite element method and the Exact solution approach are used to achieve and compare both results. Furthermore, the combination of both methods shows that there are potentials for using this approach towards the optimization of metal forming in manufacturing processes and some engineering practices. Keywords: Forging; LaGrange Interpolation Function; Bubnov-Galerkin Weighted Residual Method; Finite Element Method.


Author(s):  
К.С. Бормотин ◽  
А. Вин

Рассматривается моделирование технологий обтяжки на прессе для изготовления обшивок двойной кривизны. Автоматизированное формообразование деталей требует разработки управляющей программы и электронной модели пуансона. Качество полученной детали будет зависеть от точности вычисленной и изготовленной формы оснастки, задающей упреждающую форму панели, и траектории деформирования листовой заготовки. При условии заданной оснастки ставится задача оптимального управления для поиска наилучшей траектории движения зажимов в оборудовании. Вводятся критерии оптимизации процессов деформирования, которые обеспечивают минимальную поврежденность и максимальные остаточные деформации. Вычисление критериев выполняется с помощью моделирования и анализа нелинейного деформирования панели с контактными ограничениями методом конечных элементов. Формулируется дискретная задача оптимального управления, которая решается методом динамического программирования. Алгоритмы численного метода, реализованные в пакете программ MSC.Marc, позволяют вычислить оптимальные параметры работы обтяжного пресса. Программная реализация алгоритма выполнена в последовательном и параллельном режимах. На основе вычислительных экспериментов показана эффективность параллельного расчета на кластере вычислительных машин. We analyze the stretchforming technology using a press to manufacture the doublecurvature shells. The automated shaping of parts requires the development of a control program and an electronic model of a punch. The quality of the part obtained depends on the accuracy of the calculated and manufactured tools that specify the anticipated shape of the panel and on the deformation path of the sheet. Under the condition of a given tooling, an optimal control problem is formulated to find the best trajectory of movement of the clamps in the equipment. Some criteria for deformation optimization processes are introduced to ensure a minimum damage and maximum residual deformations. The calculation of the criteria is performed with the aid of modeling and analyzing the panel nonlinear deformation with contact constraints by the finite element method. The problems of inelastic deformation are solved by the finite element method. A discrete optimal control problem is formulated and solved by the methods of dynamic programming. The algorithms are implemented using the MSC.Marc package and allow us to calculate the optimal parameters of the stretchforming press in serial and parallel modes. The obtained numerical results show the efficiency of parallel implementations on a cluster of computers.


Sign in / Sign up

Export Citation Format

Share Document