Study on Classification Technology of Wool and Cashmere Based on GA-SVM

2011 ◽  
Vol 332-334 ◽  
pp. 1198-1201 ◽  
Author(s):  
Yun Hui Yang ◽  
Yi Ping Ji

Distinguishing of wool and cashmere is one of the toughest problems in fiber identification area. Support Vector Machine (SVM) was advanced here to classify fibers, and Genetic Algorithm (GA) was used to optimize multi-parameters of SVM simultaneously. Experimental results show that it plays full part of the GA, and accelerates the optimization search of SVM parameters. The model established is of practical significance in identification of wool and cashmere.

2015 ◽  
Vol 3 (5) ◽  
pp. 398-410 ◽  
Author(s):  
Xiaodan Zhang ◽  
Ang Li ◽  
Pan Ran

AbstractThe standard semi-supervised support vector machine (S3VM) is an unconstrained optimization problem of non-convex and non-smooth, so many smooth methods are applied for smoothing S3VM. In this paper, a new smooth semi-supervised support vector machine (SS3VM) model , which is based on the biquadratic spline function, is proposed. And, a hybrid Genetic Algorithm (GA)/ SS3VM approach is presented to optimize the parameters of the model. The numerical experiments are performed to test the efficiency of the model. Experimental results show that generally our optimal SS3VM model outperforms other optimal SS3VM models mentioned in this paper.


2021 ◽  
Vol 10 (11) ◽  
pp. 766
Author(s):  
Xishihui Du ◽  
Kefa Zhou ◽  
Yao Cui ◽  
Jinlin Wang ◽  
Shuguang Zhou

Machine learning (ML) as a powerful data-driven method is widely used for mineral prospectivity mapping. This study employs a hybrid of the genetic algorithm (GA) and support vector machine (SVM) model to map prospective areas for Au deposits in Karamay, northwest China. In the proposed method, GA is used as an adaptive optimization search method to optimize the SVM parameters that result in the best fitness. After obtaining evidence layers from geological and geochemical data, GA–SVM models trained using different training datasets were applied to discriminate between prospective and non-prospective areas for Au deposits, and to produce prospectivity maps for mineral exploration. The F1 score and spatial efficiency of classification were calculated to objectively evaluate the performance of each prospectivity model. The best model predicted 95.83% of the known Au deposits within prospective areas, occupying 35.68% of the study area. The results demonstrate the effectiveness of the GA–SVM model as a tool for mapping mineral prospectivity.


2012 ◽  
Vol 424-425 ◽  
pp. 1342-1346 ◽  
Author(s):  
Xiao Lin Chen ◽  
Yan Jiang ◽  
Min Jie Chen ◽  
Yong Yu ◽  
Hong Ping Nie ◽  
...  

A lot of cost-sensitive support machine vector methods are used to handle the imbalanced datasets, but the obtained results are not as perfect as expectation. A promising method is proposed in this paper, named ADC-SVM, which uses genetic algorithm to dynamically search the optimal misclassification cost to build a cost sensitive support machine. We empirically evaluate ADC-SVM with SVM and Cost-sensitive SVM over 8 realistic imbalanced bi-class datasets from UCI. The experimental results show that ADC-SVM outperforms the other two methods over all the imbalanced datasets.


2020 ◽  
Vol 27 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Lei Xu ◽  
Guangmin Liang ◽  
Baowen Chen ◽  
Xu Tan ◽  
Huaikun Xiang ◽  
...  

Background: Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. Objective: In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. Method: We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. Results: Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. Conclusion: The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.


Author(s):  
Shikhar P. Acharya ◽  
Ivan G. Guardiola

Radio Frequency (RF) devices produce some amount of Unintended Electromagnetic Emissions (UEEs). UEEs are generally unique to a device and can be used as a signature for the purpose of detection and identification. The problem with UEEs is that they are very low in power and are often buried deep inside the noise band. The research herein provides the application of Support Vector Machine (SVM) for detection and identification of RF devices using their UEEs. Experimental Results shows that SVM can detect RF devices within the noise band, and can also identify RF devices using their UEEs.


Sign in / Sign up

Export Citation Format

Share Document