Study on Original Coal Seam Permeability Coefficient

2011 ◽  
Vol 361-363 ◽  
pp. 179-182
Author(s):  
Zi Wen Dong ◽  
Qing Jie Qi ◽  
Nan Hu ◽  
Chang Fu Xu ◽  
Hui Niu

In the case of gas radial flowing in layer-though boring, use the method of draining water gathering gas measured the Gas flow of borehole that there is water flow out from drilling Sometimes,the coal seam gas permeability coefficient is calculated using"Radial Flow Method"and"Optimizing Method,found out the range of 5-3 original coal seam Hongmiao coal mine permeability coefficient is0.007~0.008 m2/(MPa2·d).

2016 ◽  
Vol 56 (2) ◽  
pp. 608
Author(s):  
Jie Yi ◽  
Huilin Xing ◽  
Tianwei Sun ◽  
Victor Rudolph

The production of coal seam gas initially requires pumping and removing significant amounts of water to sufficiently reduce the hydrostatic pressure in the subsurface, so that methane can desorb from the matrix and diffuse into the cleat systems; majority of the methane molecules gather into nucleation or bubbles. During the depression, the flow pattern of gas in cleats changes from bubble flow to slug flow, and finally forms circular flow. The significance of the bubble flow process—during which the liquid phase is continuous while the gas phase exists as small bubbles randomly distributed within the liquid—has not been emphasised because of its complexity. In this study, a free energy based two-phase lattice Boltzmann model is used to simulate the gas bubble/water flow behaviour in micro-cleats of a coal seam gas reservoir. The model was validated by comparison with analytical results based on dimensionless numbers, and good agreement was found in general. The influences of bubble shape, bubble size, and coal surface wettability on gas water two-phase flow in micro-cleats are discussed. The simulation results indicate that the bubble size and wettability of gas have significant impacts on the flow capacity of both gas and water. A decrease of the water flow rate is observed when large bubbles occur, and the gas flow rate decreases when the gas wettability becomes stronger. The bubble flow process significantly influences the drainage of water and the further gas production.


2006 ◽  
Vol 46 (1) ◽  
pp. 367 ◽  
Author(s):  
R.W. Day ◽  
R.F. Prefontaine ◽  
P.A.J. Bubendorfer ◽  
M.H. Oberhardt ◽  
B.J. Pinder ◽  
...  

In 2001, Arrow Energy NL, a fledgling coal seam gas (CSG) explorer, drilled the first wells of a multi-well exploration program in two Authorities To Prospect (ATP) permits—ATPs 683P and 676P—that covered an area totalling 13,817 km2 of the Jurassic Walloon Coal Measures in the eastern Surat Basin. The objective was to discover significant CSG resources and, if successful, to commercialise to reserve status. Early exploration success in 2002 saw the discovery of the Kogan North and Tipton West CSG fields. This paper reviews the discovery and subsequent appraisal and development work that Arrow Energy has completed to establish production from these fields.By 2004, Arrow Energy had independently certified Probablereserves in the Kogan North field of 85 PJ, and Possible reserves of 157 PJ. Results from a five-well CSG pilot operation demonstrated the feasibility of commercial gas flow rates sufficiently to justify commercialising CSG from the Walloon Coal Measures in the Kogan North field. Under the terms of a staged development agreement, CS Energy Ltd—Queensland’s largest electricity generator—farmed into the Kogan North Project to earn a 50% interest in PL194 and an adjoining portion of ATP 676P by funding A$13.1 million of the project’s development and appraisalcosts. The funds provided by CS Energy covered the majority of the development costs required for Arrow’s Kogan North development project. The initial gas sales contract from Kogan North will supply sales gas of 4 PJ/a for 15 years to CS Energy from March 2006. Arrow Energy retains the remaining 50% interest and operates the project.With 25 PJ Probable, 90 PJ Probable and 1,980 PJ Possiblegas reserves certified independently, the Tipton West field could potentially be one of the largest onshore gas fields in eastern Australia. Final appraisal of the Tipton West field is currently underway with financial close on the development expected in late 2005. Beach Petroleum Ltd has entered into an agreement to fund the A$35 million required for upstream developmentto supply the initial 10 PJ/a sales gas from the field in 2007, in exchange for 40% interest in th Dalby block of ATP683P. Arrow Energy retains the remaining 60% interest and operates the project.Diligent environmental and land management systems are required with the development of any CSG field. For example, formation water produced from CSG activities needs to be managed effectively. To deal with this water Arrow Energy is developing and implementing several innovative strategies, including forced evaporation dams, water supply to local coal-washing plants and trialling desalination plants to provide drinking water for nearby towns, aquaculture and stock watering.Arrow Energy has also implemented a Cultural Heritage Management Plan within the development areas in cooperation with the local indigenous claimant groups, the Western Wakka Wakka and the Barunggam peoples. The plan was designed to minimise risk of any disturbance to indigenous artefacts and areas of significance during the exploration, construction and ongoing operations associated with the development of both gas fields.The discovery and future development of the Kogan North and Tipton West fields has been achieved by using an appropriate mix of geological evaluation, efficient drilling techniques, innovative well completion methods and successful marketing strategies, integrated with cooperative environmental and cultural heritage management systems.


2017 ◽  
Vol 57 (2) ◽  
pp. 629
Author(s):  
Terrance Presley ◽  
Evilia Kurnia ◽  
Basia Wronski

This paper discusses the early outcomes of a trial of well head compression on coal seam gas (CSG) wells to lower surface pressure at the well head. This is a case study of four Johnson Controls Frick rotary screw compressor packages that were installed on CSG wells in an Origin Energy field in the Bowen basin and the early effects of lower well pressures on increased gas production due to the installation of compression. In mid-2016 Johnson Controls installed four compressor packages on Origin Energy wells with different characteristics (age, flow pressure), with a view of determining uplift of gas flow over the remaining life of the well, as well as operational issues with having well head compression. The expected versus actual uplift is compared for the different wells, with a view of providing some guidance on future potential wells that will benefit from this type of compression. Operational issues, such as effects on water flow, effect of oil and overall design considerations for well head compression, are also discussed.


2019 ◽  
Vol 23 (Suppl. 3) ◽  
pp. 907-915
Author(s):  
Jianguo Zhang ◽  
Man Wang ◽  
Yingwei Wang

As coal mining gradually extends deeper, coal seams in China generally show high stress, high gas pressure and low permeability, bringing more difficulty to coal mining. Therefore, in order to strengthen gas extraction, it is necessary to carry out reservoir reconstruction after deep coal seams reached. In this paper, the distribution and evolution laws of fracture zone overlaying strata of J15 seam in Pingdingshan No. 10 coal mine after excavation were studied by combining similar simulation and numerical simulation, meanwhile, the gas transport law within fracture zone was numerically simulated. The results show that the fracture zone reaches a maximum of 350 mm in the vertical direction and is 75 mm away from W9,10 coal seams in vertical distance. Since W9,10 coal seams are in an area greatly affected by the bending zone of J15 coal seam under the influence of mining, the mining of J15 coal seam will exert a strong permeability enhancement effect on W9,10 coal seams. The J15 coal seam can act as a long-distance protective layer of W9,10 coal seams to eliminate the outburst danger of the long-distance coal seams in bending zone with coal and gas outburst danger, thereby achiev?ing safe, productive and efficient integrated mining of coal and gas resources. The gas flux of mining-induced fractures in the trapezoidal stage of mining-induced fracture field is far greater than that in the overlaying stratum matrix. The horizontal separation fractures and vertical broken fractures within the mining-induced fracture field act as passages for gas-flow. Compared with gas transport in the overlaying stratum matrix, the horizontal separation fractures and vertical broken fractures within the mining-induced fracture field play a role in guiding gas-flow. The research results can provide theoretical support for the arrangement of high-level gas extraction boreholes in roof fracture zones.


2019 ◽  
Vol 136 ◽  
pp. 04004
Author(s):  
Manzheng Yang ◽  
Bingrui Li ◽  
Shubo Li

In order to achieve rapid determination of coal seam permeability, the calculation method of coal seam permeability coefficient was studied. Based on the Darcy's law in the flow of gas in the coal seam, the relationship equation between the gas pressure of the borehole and the gas permeability coefficient of the coal seam is established under the radial unsteady flow state. The gas permeability coefficient of the coal seam is obtained by coordinate transformation and integral transformation. Solve the expression. The analysis and verification of the field measured data show that the expression of the analytical solution of the coal seam permeability coefficient is consistent with the variation of the borehole pressure-time curve, which can provide a theoretical basis for the rapid determination of coal seam permeability.


2012 ◽  
Vol 271-272 ◽  
pp. 679-683
Author(s):  
Gen Yin Cheng ◽  
Li Ming Qi ◽  
You Cheng

Gas flow is a complicated process in the condition of active manometry, we can build a gas flow model on the base of coal seam gas flow theory and math calculation. Through this gas flow model, we can get the traits of gas flow in coal seam around borehole.


Sign in / Sign up

Export Citation Format

Share Document